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1. ABSTRACTA numerical simulation of an upward directed, 2{dimensional, turbulent gas{droplet 
ow around an axi-symmetric nozzle in a cylindrical chamber was made.We use a Lagrangian method, where trajectories ofmany droplets are calculated from the equations of mo-tion along with the continuity and momentum equati-ons of 
uid. Strong coupling e�ects between the twophases are dealt with. Special algorithms were introdu-ced for particle tracking and interpolation of the 
uid
ow data at the particle location on the numerical grid,which use multigrid structure for improvement of thespeed of droplet trajectory calculation. The Lagran-gian solver for the calculation of the trajectory and par-ticle momentumsource term was parallelised on a work-station cluster using a host{node programming model.The resulting droplet and 
uid velocities at di�erentcross sections of the cylindrical chamber are reportedand compared with measurements.2. INTRODUCTIONIn many engineering 
ow situations particulate two{phase 
ows play an important role. The motion ofparticles or droplets in a turbulent 
ow has been stu-died theoretically, numerically and experimentally formore than 40 years. In the last decade the modellingof two{phase 
ows has been performed in several di�e-rent ways. The continuous phase is usually predictedfrom an Eulerian approach and the behaviour of dis-crete particles is predicted from either an Eulerian or

a Lagrangian approach. The performances of each ap-proach have been studied in detail in the literature bye.g. Durst et al. [3] and Crowe [2].The objective of this work was to develop, testand validate a numerical algorithm for the predic-tion of particulate two{phase 
ows in particular for
ow regimes in gas cleaning and spray drying facili-ties. An Eulerian/Lagrangian stochastic{deterministic(LSD{)model was incorporated in the FASTEST(Flow Analysis by Solving Transport Equations withSimulated Turbulence) code developed by M. Peri�cand A.D. Gosman. The Lagrangian particle trajectorysolver was specially adapted to the non{orthogonal,boundary{�tted arbitrary numerical grids used by theNavier{Stokes solver and to the full multigrid solutionscheme implemented in FASTEST. The PSI{cell mo-del developed by Crowe et al. [1] has been used. Thechosen test 
ow case was a cylindrical, vertical upwarddirected, turbulent gas{droplet 
ow. It is perturbed bya 90� jet from a solid cone nozzle located on the axis ofsymmetry. This jet can be directed either in upward ordownward direction. The 
ow is assumed to be axisym-metric and corresponds to the experiments of Schulzeet al.'s [12, 13].3. EQUATIONS OF FLUID MOTION3.1. The Coordinate systemThe coordinate system is shown in Fig. 1. The 
uidmotion is determined on a cylindrical grid (x; r) bene-�tting from the radial symmetry of the problem. The
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Figure 1: Geometry and coordinate system.x{axis is in the direction of the vertical main stream,the r{axis is in the horizontal direction. For the calcu-lation of the droplet motion, the Cartesian coordinatesystem (x; y) is adopted.3.2. Fundamental equationsThe turbulent two{phase (gas{droplet) 
ow underconsideration is described by assuming that the par-ticulate phase is dilute, but the particle loading is ap-preciable. Inter{particle e�ects are neglected, but thee�ects of the particles on the gas 
ow are taken intoaccount. The two{phase 
ow is statistically stationary,incompressible and isothermal. The gas phase has con-stant physical properties and is Newtonian. Underthese assumptions the time{averaged form of the gover-ning gas{phase equations can be cast into the followingform of the general transport equation :@@x (�F uF �) + 1r @@r (r �F vF�) = @@x �� @�@x�+ 1r @@r �r� @�@r �+ S� + SP� (1)where � stands for uF , vF , k and ". The terms S�and � represent the "source" and the e�ective di�usioncoe�cient, respectively, and SP� represents the couplingthrough the particle{
uid interaction. This last term iscalculated by solving the Lagrangian equation of par-ticle motion. The continuity equation is obtained by

setting � = 1, � = 0.For modelling of 
uid turbulence the standard k{"turbulence model together with isotropic eddy viscosityand standard model constants are used :�t = C� �F k2" ; �t� = �t��Sk = Pk � �F "S" = C"1 "k Pk � C"2 �F "2k (2)C� = 0:09 ; C"1 = 1:44 ; C"2 = 1:92�k = 1:0 ; �" = 1:33where Pk is the rate of production of turbulence. Thein
uence of particle motion on 
uid turbulence charac-teristics was neglected (SPk = SP" = 0).
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Figure 2: The PSI-cell model. Calculation of particlemomentum source terms.3.3. Particle momentum source termIn the PSI-cell model [1, 2], the force excerted ona 
uid control volume by a single particle is calcula-ted from the residence time of a particle in the con-trol volume and the change in particle momentum inthat time. In order to calculate the particle momentumsource terms SPuF and SPvF in the momentum equationsthe points of intersection of the particle trajectory withthe faces of the control volume have to be calculatedand the particle and 
uid properties have to be inter-polated in this points (Fig. 2). The particle momentumsource term is then as follows :



SPuFi =X _NP �F AP2 Z touttin CD vrel (uFi�uPi) dt (3)where the summation is taken over all the represen-tative particles crossing the control volume. Becausethe number of test particles used for simulation is li-mited and di�erent from that of particles which wouldactually cross the control volume, _NP characterises theparticle 
ow rate for a calculated representative particletrajectory.3.4. Solution procedureThe above equations of 
uid motion were solved withthe FASTEST program package developed by Peri�c andGosman [9]. The code is designed for prediction of two-dimensional (plane or axisymmetric), laminar or turbu-lent, incompressible 
ows of Newtonian 
uid in domainsof arbitrary geometry. The numerical solution methodemployed in the code is based on the �nite volume dis-cretization of the governing equations. Characteristicsof the method are : use of non{orthogonal, boundary�tted arbitrary numerical grids; colocated arrangementof variables on numerical grids; use of Cartesian vectorand tensor components; segregated solution approachof SIMPLE kind [7]; full multigrid solving methodologyusing local bisectional grid re�nement strategy [8].The original computer code was extended by intro-duction of the particle momentum source terms in themomentum equations of 
uid motion. E�ciency of thesolution method was ensured by employing an optimi-zed underrelaxation practice concerning not only the
uid variables but also the additional source terms.4. EQUATIONS OF DROPLET MOTION INFLUID4.1. Equations of motion of the dispersed phaseThe droplet phase was treated by the Lagrangian ap-proach where a large number of droplets were followedin time along their trajectories through the 
ow do-main. Each droplet trajectory is assoziated with a dro-plet 
ow rate _NP and so represents a number of realdroplets with the same physical properties. This repre-sentation is used in order to allow the consideration ofthe droplet size distribution and to simulate the appro-priate liquid mass 
ow rate at the injection locations.The droplet trajectories were determined by solving theordinary di�erential equations for the droplet location

and velocity components. For the formulation of thedroplets equation of motion it was assumed that for-ces due to droplet rotation, the pressure gradient in the
ow, the added mass force and the Basset history forceare negligible since a large density ratio �P =�F is con-sidered. The equations of droplet motion than can bewritten as follows :d xPdt = uP ; d yPdt = vPddt � uPvP � = 34 � �F�P d2P ReP CD(ReP ) � uF � uPvF � vP �+ �P � �F�P � �g0 � (4)with :ReP = dP vrel� (5)vrel = q(uF � uP )2 + (vF � vP )2 (6)where dP { droplet diameter; uP , vP { droplet velo-city components in Cartesian coordinate system (x; y);CD { coe�cient of drag; g { gravity acceleration; � {
uid kinematic viscosity; � { density of the 
uid (F) andthe droplets (P) respectivly. The drag coe�cient CD iscalculated as a function of ReP using the correlationsobtained by Morsi and Alexander [5].The boundary conditions for the droplet tracking pro-cedure are speci�ed as follows. Trajectories are calcula-ted until the droplet leaves the 
ow domain through ainlet or outlet cross section. Droplets leaving the com-putational domain at the symmetry line (y = 0) arereplaced by droplets entering the domain with oppositradial velocity. For the droplet{wall interaction simplere
ection with a restitution coe�cient of 0.5 is assumedpresently.4.2. Lagrangian{stochastic{deterministic (LSD)turbulence modelThe e�ect of turbulence of the gas 
ow on the dro-plet motion was modelled by a stochastic procedure, theso{called LSD turbulence model proposed by Sch�onung[10], Schuh et al. [11] and Milojevi�c [4]. The mean
uid velocities uF , vF in the above equations of dropletmotion (4) are replaced by the instantaneous 
uid velo-cities UF , VF which are calculated as the sum of mean



local gas velocities and 
uctuation velocities. The va-lues of the 
uctuation velocities u0F and v0F are sampledfrom a Gaussian distribution function which is charac-terized by 0 statistical mean and a standard deviation� determined from the 
uid r.m.s. value which is eva-luated from the turbulent kinetic energy by assumingisotropic turbulence.UF = uF + u0F ; VF = vF + v0F ; � =r23k (7)Further is assumed that the droplet motion is in
u-enced by this 
uctuation velocities for a certain timeperiod, the interaction time. During this interactiontime droplet motion is controlled by the equations ofdroplet motion (4). The interaction time with one 
uideddy is limited by the eddy life time or the transit timeneeded for the droplet to traverse the eddy. Accordingto the procedure of Ormancey et al. [6], the eddy deathprobability during one time step of the Lagrangian sol-ving algorithm is calculated as the ratio of time stepsize and the Lagrangian time scale. New 
uctuationvelocities u0F , v0F are sampled when a uniformly distri-buted random number � 2 [0; 1] becomes smaller thanthe eddy death probability :� < �tTL ; TL = 0:3k" (8)The crossing trajectory e�ect is accounted for by in-tegrating the particle travel distance within one eddyand comparing it with the eddy length scale LE :xnE > LE (9)LE = 0:245k3=2" ; xnE = xn�1E +�t vrelNew 
uctuation velocities u0F , v0F are sampled whenthe travel distance xnE becomes greater than the eddylength scale, which means that the droplet enters a neweddy.4.3. Solution procedure and adaptation to themultigrid Navier{Stokes solverThe equations of motion were solved using a stan-dard Runge{Kutta solution scheme of 4th order accu-racy with automatic time step correction. In order toensure su�cient resolution of the in
uence of 
uid 
owturbulence on the droplet motion the time step �t was

limited to a maximumof 1=10 the Lagrangian time scaleTL of the generated eddy.The numerical procedure to obtain a converged solu-tion for both phases is as follows :1. A converged solution of the gas 
ow �eld was calcu-lated without source terms of the dispersed phase.2. A large number of droplets were traced through the
ow �eld, and the values of the source terms werecalculated for all control volumes of the numericalgrid.3. The 
ow �eld was recalculated by considering thesource terms of the dispersed phase, where appro-priate underrelaxation factors were considered.4. Repetition of steps 2 and 3 until convergence wasreached.In order to perform the calculation of droplet trajec-tories in the 
ow domain in the way described above,it is necessary to have procedures that determine theinitial and current position of the droplet on the nume-rical grid and procedures that interpolate 
uid proper-ties like uF , vF , k and " at the current droplet position.On simple orthogonal, rectangular grids often used forchannel or pipe 
ow calculations the droplet localiza-tion problem can easy be solved by comparison of thedroplet coordinates (xP , yP ) with the coordinates ofthe control volume faces which are parallel to the axesof the coordinate system :xi�1 � xP � xi ; yi�1 � yP � yi (10)In the case of non{orthogonal, boundary{�tted ar-bitrary numerical grids used by e.g. the Navier{Stokessolver FASTEST the droplet localization problem beco-mes a more computational time consuming task becausethe (i, j) numbering of control volumes is no longerassociated by simple analytical or tabular expressionswith the coordinates of control volume faces or corners.In the worst case each control volume of the numericalgrid has to be checked for droplet location at the begin-ning of the trajectory calculation process and at everytime step of the Runge{Kutta solving method what re-sults in a sharp increase in computational time of theLagrangian solver.In the algorithm presented here the speed of dro-plet trajectory calculations was improved using themultigrid structure of the numerical grid incorporated
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particle position in the control volumeFigure 3: "Zoom" on the next �ner grid level in search for the droplet location on the numerical grid.in FASTEST and the bisectional re�nement strategy,where a control volume on a coarser grid is divided in 4control volumes on the next �ner grid. The number ofgrid levels is not limited by the algorithm. So the searchfor the initial droplet location is performed over all con-trol volumes only on the coarsest grid (�rst grid level)until the control volume, the droplet trajectory startsin, is found. Once the droplet location on the coarsestgrid was found, a "zoom" onto the highest grid level isexecuted (Fig. 3). Only at most 4 control volumes haveto be checked for droplet location at each step of the"zoom" process.If the droplet location on the numerical grid at themoment t is known the droplet location at the momentt + �t (after a Runge{Kutta time step) is determinedby projection of the old droplet location (ik; jk)jt ontothe coarsest grid and by performing a "circular search"shown in Fig. 4 around the control volume of the olddroplet location (i1; j1)jt. If the new droplet location onthe coarsest grid (i1; j1)jt+�t could be found, a "zoom"on the �nest grid is executed again.Interpolation of uF , vF , k and " at the droplet posi-tion is than performed with the values of 
uid proper-ties stored at the corner locations of the control volumeof the �nest grid (ik; jk)jt.

4.4. Parallelisation of droplet trajectory calcu{lationsFurther improvement of the computational speed ofdroplet trajectory calculations was achieved throughparallelization of the Lagrangian solver. The target sy-stem for the parallelized program was a network of HP735/755 workstations with large amount of local me-mory. The parallelization was based on the EXPRESSlibrary of communication routines.The implementation corresponds to the host{nodeprogramming model (see Fig. 5). The host programreads �rst the numerical grid and 
uid 
ow data anddistributes them to all node programs. After the ge-neration of initial conditions for the droplet trajecto-ries the host program waits for requests from node pro-grams. On demand the host sends the initial conditi-ons for one trajectory to the node sending the request.Node programs are calculating the droplet trajectoriesand the corresponding momentum source terms simul-tanously. After calculation of all droplet trajectories thehost program calculates the global sum of all momen-tum source terms over all nodes and control volumes.Automatic load balancing is achieved by distribution ofinitial conditions for trajetories on demand. The smallamount of communication between host and node pro-grams results in a approximatly ideal speedup of thetrajectory calculation process.
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Figure 4: "Circular search" around the control volume of the old droplet location.In a further step of program development the Navier{Stokes solver has to be parallelized too. The Lagran-gian solver has to be modi�ed to run on distributedgrid and 
uid 
ow data. With this modi�cations theprogram will be able to run not only on workstationclusters but also on dedicated parallel computer archi-tectures (e.g. MIMD computers) with a great numberof computational nodes and smaller amounts of localmemory.5. RESULTS AND DISCUSSION5.1. Flow con�guration and conditions ofsimulationFor the chosen test case 
ow con�guration corre-sponds to Schulze et al.'s [12, 13] experiments. Gas 
owat normal temperature enters a vertical cylindrical testsection with a uniform velocity distribution at the inletcross section (Fig. 1). The geometry data and physicalproperties of air 
ow have the following values :Radius of test section R = 1:5mHeight of test section H = 6:0mAir density �F = 1:0786 kg=m3Kinematic viscosity �F = 1:821 � 10�5m2=sA solid cone nozzle with downward directed jet was

mounted on the symmetry axis of the test section atx = 2:75m. The characteristics of the nozzle and thejet of droplets are :Diameter of the nozzle DN = 0:1mInitial cone angle of the nozzle �N = 90�Droplet density �P = 994 kg=m3Initial droplet velocity ����!vP ��� = 8:0m=sDroplet volume 
ow rate _VP = 33:9m3=hDroplet diameter dP was sampled from a Gaussiandistribution with a mean diameter of �dP = 876:5�mand a standard deviation of 300�m.5.2. Droplet and air velocitiesIn order to compare numerical and experimental re-sults simulations were performed for 4 di�erent va-lues of gas 
ow velocity at the inlet cross sectionuFin = 1:0m=s; 2:0m=s; 3:0m=s and 4:0m=s. Fig. 6shows the calculated streamlines for the 4 di�erent inletgas velocities. A recirculating 
ow around the injectionpoint of the droplets is formed due to phase interactionbetween the gas 
ow and the droplet spray with highdroplet loading near the nozzle. The size of the domainof recirculating 
ow depends on the inlet gas velocity.Fig. 7 shows that most of the droplets are leaving the




ow domain through the inlet cross section of the gas
ow at x = 0:0. For low inlet gas velocities only a smallnumber of small droplets is a�ected by the recircula-ting 
ow and is carried by the gas 
ow to the upperoutlet cross section. With increasing inlet gas velocitythe number and the diameter of droplets reaching thedomain above the injection point and the outlet crosssection also increases. Due to lower gas velocities in thisdomain above the nozzle the larger droplets are movingtowards the cylinder wall and are falling back along thewall (Fig. 7). In case of higher inlet gas velocities asecond recirculating 
ow was observed near the wall ofthe test section above the injection point.Fig. 8{11 show comparison of calculated gas anddroplet velocities with measurements of Schulze et al.[12, 13] at 4 di�erent cross sections of the cylindricalchamber at x = 1:15m; 1:55m; 1:95m and 2:35m. Forthe velocities of the particulate phase only 10% of the2000 numerically predicted values are presented here.Also for the measured values of droplet velocities onlythe mean velocities are shown in the Fig. 8{11. Theerror bars were omitted in the diagrams because of thehigh information density. In the diagrams of Fig. 8{11the gas and droplet velocities are normalized with theinitial droplet velocity ����!vP ��� = 8m=s.Diagrams show the downward recirculating gas 
owwith negative velocities near the symmetry axis andthe positive gas velocities near the wall of the cylind-rical chamber. Droplet velocities in Fig. 8{11 showthe development of the downward directed jet from thenozzle with the spreading angle of 90�. Near the wall asmaller number of droplets are following the upward gas
ow. Diagrams in Fig. 10 and 11 for uFin = 3:0m=sand uFin = 4:0m=s show, that the increasing numberof upward moving droplets leads to a more signi�cantgas{droplet interaction in the region near the cylinderwall. The agreement of calculated and measured gasvelocities is reasonably good. Local di�erences betweenexperimental and numerical results in the region nearthe symmetry axis are due to the relativ small numberof calculated droplet trajectories in connection with thesmall size of the control volumes of the numerical gridin that region. This leads to a slight overpredictionof the gas{droplet phase interaction due to momentumexchange in the immediate vicinity of the symmetryaxis.For the greater di�erences between measured and cal-culated droplet velocities there are two main reasons.

At �rst the numerical code does'nt consider the degra-dation of droplets by droplet{droplet and droplet{wallinteraction. Therefore the droplet diameter distributionin numerical calculations is only determined by the in-itial droplet diameter distribution at the inlet cross sec-tion of the nozzle. Under real 
ow conditions variousinteraction processes produce a signi�cant number ofsmall droplets which are aible to follow the gas 
owmore closely. This small droplets are shifting the lo-cal droplet diameter distribution and the mean of thedroplet velocity measurements.Another reason for the di�erences in the predicteddroplet velocities is the not so reliable measurement me-thod used in the experiments of Schulze et al. [12]. Asauthers have mentioned in [13], it was impossible to usea phase{Doppler anemometer for concurrent measure-ments of the gas and droplet velocities. A laser{Doppleranemometer was used instead, which has measured ve-locities of droplets with a diameter dP � 30�m. Thatleads to a dependence of the measured mean dropletvelocity from the local droplet diameter distribution.These di�erences need further investigations related tothe development of the droplet diameter distribution inthe 
ow domain.6. CONCLUSIONSA numerical study of a gas{droplet 
ow was perfor-med based on the Eulerian/Lagrangian approach takinginto account the in
uence of gas{droplet interaction dueto momentumexchange and the in
uence of 
uid turbu-lence on the droplet motion. The comparison of the nu-merical simulations with experiments for a gas{droplet
ow around a solid cone nozzle in a cylindrical chambershowed good agreement which indicates that the mostimportant physical e�ects altering the gas 
ow and thedroplet motion have been included in the calculation bythe appropriate models.References[1] Crowe C.T., Sharma M.P., Stock D.E., 1977, "TheParticle{Source{In Cell (PSI{Cell) Model for Gas{Droplet Flows," Trans. of ASME, J. Fluids Eng.,Vol. 99, pp. 325{332.[2] Crowe C.T., 1982, "REVIEW | NumericalModels for dilute Gas{Particle Flows," Trans. ofASME, J. Fluids Eng., Vol. 104, pp. 297{303.
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Figure 5: Flow chart of the host{node program structure of the Lagrangian solver.



This picture was to large to integrate it in this document !
Figure 6: Streamlines of gas{droplet 
ow.



This picture was to large to integrate it in this document !
Figure 7: Droplet trajectories for 2 di�erent velocities at the inlet cross section uFin = 1:0m=s and uFin = 4:0m=s.
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Figure8:GasanddropletvelocitydistributionsforuFin =1:0m=s.
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Figure10:GasanddropletvelocitydistributionsforuFin =3:0m=s.



0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

Normalized radius r/R

Normalized

velocity
Exper. uf
Exper. up

Calcul. up

Calcul. uf

Fluid velocity at inlet cross section uf=4.0 m/s

Velocity distribution at x=1.55 m

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

Normalized radius r/R

Normalized

velocity
Exper. uf
Exper. up

Calcul. up

Calcul. uf

Fluid velocity at inlet cross section uf=4.0 m/s

Velocity distribution at x=1.15 m

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

Normalized radius r/R

Normalized

velocity
Exper. uf
Exper. up

Calcul. up

Calcul. uf

Fluid velocity at inlet cross section uf=4.0 m/s

Velocity distribution at x=1.95 m

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

Normalized radius r/R

Normalized

velocity

Velocity distribution at x=2.35 m

Exper. uf
Exper. up

Calcul. up

Calcul. uf

Fluid velocity at inlet cross section uf=4.0 m/sFigure11:GasanddropletvelocitydistributionsforuFin =4:0m=s.


