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1. ABSTRACT

A numerical simulation of an upward directed, 2-
dimensional, turbulent gas—droplet flow around an axi-
symmetric nozzle in a cylindrical chamber was made.
We use a Lagrangian method, where trajectories of
many droplets are calculated from the equations of mo-
tion along with the continuity and momentum equati-
ons of fluid. Strong coupling effects between the two
phases are dealt with. Special algorithms were introdu-
ced for particle tracking and interpolation of the fluid
flow data at the particle location on the numerical grid,
which use multigrid structure for improvement of the
speed of droplet trajectory calculation. The Lagran-
gian solver for the calculation of the trajectory and par-
ticle momentum source term was parallelised on a work-
station cluster using a host-node programming model.
The resulting droplet and fluid velocities at different
cross sections of the cylindrical chamber are reported
and compared with measurements.

2. INTRODUCTION

In many engineering flow situations particulate two—
phase flows play an important role. The motion of
particles or droplets in a turbulent flow has been stu-
died theoretically, numerically and experimentally for
more than 40 years. In the last decade the modelling
of two—phase flows has been performed in several diffe-
rent ways. The continuous phase is usually predicted
from an FEulerian approach and the behaviour of dis-
crete particles is predicted from either an Eulerian or

a Lagrangian approach. The performances of each ap-
proach have been studied in detail in the literature by
e.g. Durst et al. [3] and Crowe [2].

The objective of this work was to develop, test
and validate a numerical algorithm for the predic-
tion of particulate two—phase flows in particular for
flow regimes in gas cleaning and spray drying facili-
ties. An Eulerian/Lagrangian stochastic—deterministic
(LSD-)model was incorporated in the FASTEST
(Flow Analysis by Solving Transport Equations with
Simulated Turbulence) code developed by M. Perié
and A.D. Gosman. The Lagrangian particle trajectory
solver was specially adapted to the non-orthogonal,
boundary—fitted arbitrary numerical grids used by the
Navier—Stokes solver and to the full multigrid solution
scheme implemented in FASTEST. The PSI-cell mo-
del developed by Crowe et al. [1] has been used. The
chosen test flow case was a cylindrical, vertical upward
directed, turbulent gas—droplet flow. It is perturbed by
a 90° jet from a solid cone nozzle located on the axis of
symmetry. This jet can be directed either in upward or
downward direction. The flow is assumed to be axisym-
metric and corresponds to the experiments of Schulze

et al.’s [12, 13].
3. EQUATIONS OF FLUID MOTION

3.1. The Coordinate system
The coordinate system is shown in Fig. 1. The fluid

motion is determined on a cylindrical grid (z,r) bene-
fitting from the radial symmetry of the problem. The
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Figure 1: Geometry and coordinate system.

x—axis is in the direction of the vertical main stream,
the r—axis is in the horizontal direction. For the calcu-
lation of the droplet motion, the Cartesian coordinate
system (z,y) is adopted.

3.2. Fundamental equations
The turbulent two—phase (gas—droplet) flow under

consideration is described by assuming that the par-
ticulate phase is dilute, but the particle loading is ap-
preciable. Inter—particle effects are neglected, but the
effects of the particles on the gas flow are taken into
account. The two—phase flow 1s statistically stationary,
incompressible and isothermal. The gas phase has con-
stant physical properties and is Newtonian. Under
these assumptions the time-averaged form of the gover-
ning gas—phase equations can be cast into the following
form of the general transport equation :
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where ® stands for up, vp, k and . The terms Sg
and I represent the ”source” and the effective diffusion
coefficient, respectively, and SE represents the coupling
through the particle—fluid interaction. This last term 1s
calculated by solving the Lagrangian equation of par-
ticle motion. The continuity equation is obtained by

setting =1, T = 0.

For modelling of fluid turbulence the standard k—¢
turbulence model together with isotropic eddy viscosity
and standard model constants are used :
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where P is the rate of production of turbulence. The
influence of particle motion on fluid turbulence charac-
teristics was neglected (S¥ = 5P =0).
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Figure 2: The PSl-cell model. Calculation of particle
momentum source terms.

3.3. Particle momentum source term
In the PSI-cell model [1, 2], the force excerted on
a fluid control volume by a single particle is calcula-

ted from the residence time of a particle in the con-
trol volume and the change in particle momentum in
that time. In order to calculate the particle momentum
source terms SfF and SfF in the momentum equations
the points of intersection of the particle trajectory with
the faces of the control volume have to be calculated
and the particle and fluid properties have to be inter-
polated in this points (Fig. 2). The particle momentum
source term is then as follows :
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where the summation is taken over all the represen-

Cp vrer (up; —up;) dt (3)

n

tative particles crossing the control volume. Because
the number of test particles used for simulation is li-
mited and different from that of particles which would
actually cross the control volume, Np characterises the
particle flow rate for a calculated representative particle
trajectory.

3.4. Solution procedure

The above equations of fluid motion were solved with
the FASTEST program package developed by Peri¢ and
Gosman [9]. The code is designed for prediction of two-

dimensional (plane or axisymmetric), laminar or turbu-
lent, incompressible flows of Newtonian fluid in domains
of arbitrary geometry. The numerical solution method
employed in the code is based on the finite volume dis-
cretization of the governing equations. Characteristics
of the method are :
fitted arbitrary numerical grids; colocated arrangement

use of non—orthogonal, boundary

of variables on numerical grids; use of Cartesian vector
and tensor components; segregated solution approach
of SIMPLE kind [7]; full multigrid solving methodology
using local bisectional grid refinement strategy [8].
The original computer code was extended by intro-
duction of the particle momentum source terms in the
momentum equations of fluid motion. Efficiency of the
solution method was ensured by employing an optimi-
zed underrelaxation practice concerning not only the
fluid variables but also the additional source terms.

4. EQUATIONS OF DROPLET MOTION IN
FLUID

4.1. Equations of motion of the dispersed phase

The droplet phase was treated by the Lagrangian ap-
proach where a large number of droplets were followed
in time along their trajectories through the flow do-
main. Each droplet trajectory is assoziated with a dro-
plet flow rate Np and so represents a number of real
droplets with the same physical properties. This repre-
sentation is used in order to allow the consideration of
the droplet size distribution and to simulate the appro-
priate liquid mass flow rate at the injection locations.
The droplet trajectories were determined by solving the
ordinary differential equations for the droplet location

and velocity components. For the formulation of the
droplets equation of motion it was assumed that for-
ces due to droplet rotation, the pressure gradient in the
flow, the added mass force and the Basset history force
are negligible since a large density ratio pp/pp is con-
sidered. The equations of droplet motion than can be
written as follows :

dezp dyp
T
d up 3 VPR Up —up
— = - Rep Cp(R
dt [ vp ] 4 pp d% ep Cn( ep)[ vp — vp
pp —pPF | —4
+ == 4
PP [ 0 ] ( )
with :
dPUrel
R = 5
ep » (5)

v = \Jur—up)’ +@r—vp)?  (6)

where dp — droplet diameter; up, vp — droplet velo-
city components in Cartesian coordinate system (z, y);
Cp — coefficient of drag; g — gravity acceleration; v —
fluid kinematic viscosity; p — density of the fluid (F) and
the droplets (P) respectivly. The drag coefficient Cp is
calculated as a function of Rep using the correlations
obtained by Morsi and Alexander [5].

The boundary conditions for the droplet tracking pro-
cedure are specified as follows. Trajectories are calcula-
ted until the droplet leaves the flow domain through a
inlet or outlet cross section. Droplets leaving the com-
putational domain at the symmetry line (y = 0) are
replaced by droplets entering the domain with opposit
radial velocity. For the droplet—wall interaction simple
reflection with a restitution coefficient of 0.5 is assumed
presently.

4.2. Lagrangian—stochastic—deterministic (LSD)

turbulence model
The effect of turbulence of the gas flow on the dro-
plet motion was modelled by a stochastic procedure, the

so—called LSD turbulence model proposed by Schonung
[10], Schuh et al. [11] and Milojevié [4].

fluid velocities up, vp in the above equations of droplet

The mean

motion (4) are replaced by the instantaneous fluid velo-
cities Ur, Vp which are calculated as the sum of mean



local gas velocities and fluctuation velocities. The va-
lues of the fluctuation velocities uf and v/ are sampled
from a Gaussian distribution function which is charac-
terized by 0 statistical mean and a standard deviation
o determined from the fluid r.m.s. value which is eva-
luated from the turbulent kinetic energy by assuming
isotropic turbulence.

Up=up+up |, Vei=ovp+vp |, o= %k (7)

Further is assumed that the droplet motion is influ-
enced by this fluctuation velocities for a certain time
period, the interaction time. During this interaction
time droplet motion is controlled by the equations of
droplet motion (4). The interaction time with one fluid
eddy is limited by the eddy life time or the transit time
needed for the droplet to traverse the eddy. According
to the procedure of Ormancey et al. [6], the eddy death
probability during one time step of the Lagrangian sol-
ving algorithm is calculated as the ratio of time step
size and the Lagrangian time scale. New fluctuation
velocities uf, v} are sampled when a uniformly distri-
buted random number « € [0, 1] becomes smaller than
the eddy death probability :
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The crossing trajectory effect is accounted for by in-
tegrating the particle travel distance within one eddy
and comparing it with the eddy length scale Lg :

l‘% > Lg (9)
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New fluctuation velocities u}, v are sampled when

the travel distance z becomes greater than the eddy

length scale, which means that the droplet enters a new

eddy.

4.3. Solution procedure and adaptation to the
multigrid Navier—Stokes solver
The equations of motion were solved using a stan-

dard Runge—Kutta solution scheme of 4th order accu-
racy with automatic time step correction. In order to
ensure sufficient resolution of the influence of fluid flow
turbulence on the droplet motion the time step At was

limited to a maximum of 1/10 the Lagrangian time scale
Tr of the generated eddy.

The numerical procedure to obtain a converged solu-
tion for both phases is as follows :

1. A converged solution of the gas flow field was calcu-
lated without source terms of the dispersed phase.

2. A large number of droplets were traced through the
flow field, and the values of the source terms were
calculated for all control volumes of the numerical

grid.

3. The flow field was recalculated by considering the
source terms of the dispersed phase, where appro-
priate underrelaxation factors were considered.

4. Repetition of steps 2 and 3 until convergence was
reached.

In order to perform the calculation of droplet trajec-
tories in the flow domain in the way described above,
it 1s necessary to have procedures that determine the
initial and current position of the droplet on the nume-
rical grid and procedures that interpolate fluid proper-
ties like up, vp, k and € at the current droplet position.
On simple orthogonal, rectangular grids often used for
channel or pipe flow calculations the droplet localiza-
tion problem can easy be solved by comparison of the
droplet coordinates (zp, yp) with the coordinates of
the control volume faces which are parallel to the axes
of the coordinate system :

ri1<zp<z , Y-1<yp<y (10)

In the case of non-orthogonal, boundary—fitted ar-
bitrary numerical grids used by e.g. the Navier—Stokes
solver FASTEST the droplet localization problem beco-
mes a more computational time consuming task because
the (4, j) numbering of control volumes is no longer
assoclated by simple analytical or tabular expressions
with the coordinates of control volume faces or corners.
In the worst case each control volume of the numerical
grid has to be checked for droplet location at the begin-
ning of the trajectory calculation process and at every
time step of the Runge-Kutta solving method what re-
sults in a sharp increase in computational time of the
Lagrangian solver.

In the algorithm presented here the speed of dro-
plet trajectory calculations was improved using the
multigrid structure of the numerical grid incorporated
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Figure 3: ”Zoom” on the next finer grid level in search for the droplet location on the numerical grid.

in FASTEST and the bisectional refinement strategy,
where a control volume on a coarser grid 1s divided in 4
control volumes on the next finer grid. The number of
grid levels is not limited by the algorithm. So the search
for the initial droplet location is performed over all con-
trol volumes only on the coarsest grid (first grid level)
until the control volume, the droplet trajectory starts
in, is found. Once the droplet location on the coarsest
grid was found, a ”zoom” onto the highest grid level is
executed (Fig. 3). Only at most 4 control volumes have
to be checked for droplet location at each step of the
”zoom” process.

If the droplet location on the numerical grid at the
moment ¢ is known the droplet location at the moment
t + At (after a Runge-Kutta time step) is determined
by projection of the old droplet location (i, ji)|, onto
the coarsest grid and by performing a ” circular search”
shown in Fig. 4 around the control volume of the old

droplet location (i1, j1)|,. If the new droplet location on

e

the coarsest grid (i1, j1) could be found, a ”zoom”

|+ ae
on the finest grid is executed again.

Interpolation of up, vy, k and ¢ at the droplet posi-
tion is than performed with the values of fluid proper-
ties stored at the corner locations of the control volume

of the finest grid (i, jx)l,-

4.4. Parallelisation of droplet trajectory calcu—
lations
Further improvement of the computational speed of

droplet trajectory calculations was achieved through
parallelization of the Lagrangian solver. The target sy-
stem for the parallelized program was a network of HP
735/755 workstations with large amount of local me-
mory. The parallelization was based on the EXPRESS
library of communication routines.

The 1mplementation corresponds to the host—node
programming model (see Fig. 5). The host program
reads first the numerical grid and fluid flow data and
distributes them to all node programs. After the ge-
neration of initial conditions for the droplet trajecto-
ries the host program waits for requests from node pro-
grams. On demand the host sends the initial conditi-
ons for one trajectory to the node sending the request.
Node programs are calculating the droplet trajectories
and the corresponding momentum source terms simul-
tanously. After calculation of all droplet trajectories the
host program calculates the global sum of all momen-
tum source terms over all nodes and control volumes.
Automatic load balancing is achieved by distribution of
initial conditions for trajetories on demand. The small
amount of communication between host and node pro-
grams results in a approximatly ideal speedup of the
trajectory calculation process.
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Figure 4: ”Circular search” around the control volume of the old droplet location.

In a further step of program development the Navier—
Stokes solver has to be parallelized too. The Lagran-
gian solver has to be modified to run on distributed
grid and fluid flow data. With this modifications the
program will be able to run not only on workstation
clusters but also on dedicated parallel computer archi-
tectures (e.g. MIMD computers) with a great number
of computational nodes and smaller amounts of local
memory.

5. RESULTS AND DISCUSSION

5.1. Flow configuration and conditions of
simulation
For the chosen test case flow configuration corre-

sponds to Schulze et al.’s [12, 13] experiments. Gas flow
at normal temperature enters a vertical cylindrical test
section with a uniform velocity distribution at the inlet
cross section (Fig. 1). The geometry data and physical
properties of air flow have the following values :

Radius of test section R = 1.5m

Height of test section H = 6.0m

pr = 1.0786 kg/m3
Kinematic viscosity —vp = 1.821-107°m?/s

Air density

A solid cone nozzle with downward directed jet was

mounted on the symmetry axis of the test section at
x = 2.75m. The characteristics of the nozzle and the

jet of droplets are :

Diameter of the nozzle Dy = 01m
Initial cone angle of the nozzle any = 90°
Droplet density pp = 994kg/m3
Initial droplet velocity vp| = 8.0 m/s
Droplet volume flow rate Vp = 33.9 m?/h

Droplet diameter dp was sampled from a Gaussian
distribution with a mean diameter of dp = 876.5 um
and a standard deviation of 300 um.

5.2. Droplet and air velocities
In order to compare numerical and experimental re-

sults simulations were performed for 4 different va-
lues of gas flow velocity at the inlet cross section
up,, = 1.0m/s; 2.0m/s;3.0m/s and 4.0m/s. Fig. 6
shows the calculated streamlines for the 4 different inlet
gas velocities. A recirculating flow around the injection
point of the droplets 1s formed due to phase interaction
between the gas flow and the droplet spray with high
droplet loading near the nozzle. The size of the domain
of recirculating flow depends on the inlet gas velocity.
Fig. 7 shows that most of the droplets are leaving the



flow domain through the inlet cross section of the gas
flow at x = 0.0. For low inlet gas velocities only a small
number of small droplets is affected by the recircula-
ting flow and is carried by the gas flow to the upper
outlet cross section. With increasing inlet gas velocity
the number and the diameter of droplets reaching the
domain above the injection point and the outlet cross
section also increases. Due to lower gas velocities in this
domain above the nozzle the larger droplets are moving
towards the cylinder wall and are falling back along the
wall (Fig. 7). In case of higher inlet gas velocities a
second recirculating flow was observed near the wall of
the test section above the injection point.

Fig. 8-11 show comparison of calculated gas and
droplet velocities with measurements of Schulze et al.
[12, 13] at 4 different cross sections of the cylindrical
chamber at z = 1.15m;1.55m; 1.95m and 2.35m. For
the velocities of the particulate phase only 10% of the
2000 numerically predicted values are presented here.
Also for the measured values of droplet velocities only
the mean velocities are shown in the Fig. 8-11. The
error bars were omitted in the diagrams because of the
high information density. In the diagrams of Fig. 8-11
the gas and droplet velocities are normalized with the
initial droplet velocity ‘51_;‘ =8m/s.

Diagrams show the downward recirculating gas flow
with negative velocities near the symmetry axis and
the positive gas velocities near the wall of the cylind-
rical chamber. Droplet velocities in Fig. 8-11 show
the development of the downward directed jet from the
nozzle with the spreading angle of 90°. Near the wall a
smaller number of droplets are following the upward gas
flow. Diagrams in Fig. 10 and 11 for up,, = 3.0m/s
and up,, = 4.0m/s show, that the increasing number
of upward moving droplets leads to a more significant
gas—droplet interaction in the region near the cylinder
wall. The agreement of calculated and measured gas
velocities is reasonably good. Local differences between
experimental and numerical results in the region near
the symmetry axis are due to the relativ small number
of calculated droplet trajectories in connection with the
small size of the control volumes of the numerical grid
in that region. This leads to a slight overprediction
of the gas—droplet phase interaction due to momentum
exchange in the immediate vicinity of the symmetry
axis.

For the greater differences between measured and cal-
culated droplet velocities there are two main reasons.

At first the numerical code does’nt consider the degra-
dation of droplets by droplet—droplet and droplet—wall
interaction. Therefore the droplet diameter distribution
in numerical calculations is only determined by the in-
itial droplet diameter distribution at the inlet cross sec-
tion of the nozzle. Under real flow conditions various
interaction processes produce a significant number of
small droplets which are aible to follow the gas flow
more closely. This small droplets are shifting the lo-
cal droplet diameter distribution and the mean of the
droplet velocity measurements.

Another reason for the differences in the predicted
droplet velocities is the not so reliable measurement me-
thod used in the experiments of Schulze et al. [12]. As
authers have mentioned in [13], it was impossible to use
a phase—Doppler anemometer for concurrent measure-
ments of the gas and droplet velocities. A laser—Doppler
anemometer was used instead, which has measured ve-
locities of droplets with a diameter dp > 30 gm. That
leads to a dependence of the measured mean droplet
velocity from the local droplet diameter distribution.
These differences need further investigations related to
the development of the droplet diameter distribution in
the flow domain.

6. CONCLUSIONS

A numerical study of a gas—droplet flow was perfor-
med based on the Eulerian/Lagrangian approach taking
into account the influence of gas—droplet interaction due
to momentum exchange and the influence of fluid turbu-
lence on the droplet motion. The comparison of the nu-
merical simulations with experiments for a gas—droplet
flow around a solid cone nozzle in a cylindrical chamber
showed good agreement which indicates that the most
important physical effects altering the gas flow and the
droplet motion have been included in the calculation by
the appropriate models.
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Figure 5: Flow chart of the host—node program structure of the Lagrangian solver.
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Figure 6: Streamlines of gas—droplet flow.
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Figure 7: Droplet trajectories for 2 different velocities at the inlet cross section up,, = 1.0m/s and up,, = 4.0m/s.
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