
PARALLEL SOLUTION ALGORITHMS FOR LAGRANGIANSIMULATION OF DISPERSE MULTIPHASE FLOWSTh. Frank , E. WassenTechnical University of Chemnitz{ZwickauFaculty of Mechanical Engineering and Process TechnologyResearch Group of Multiphase FlowChemnitz, Germany
2nd Int. Symposium on Numerical Methods for Multiphase Flows,ASME Fluids Engineering Division Summer Meeting,July 7{11, 1996, San Diego, CA, U.S.A.Proceedings, FED{Vol. 236, Vol. 1, pp. 11{20

1. ABSTRACTThe paper deals with di�erent methods for the par-allelization of numerical algorithms which are widelyused for the prediction of disperse multiphase
ows (e.g.gas{particle or gas{droplet
ows). The underlying nu-merical algorithm is based on the Lagrangian (PSI{cell)approach, where trajectories of a large number of par-ticles/droplets are calculated from the equations of mo-tion of the disperse phase along with the continuity andmomentum equations of the
uid phase.All parallelization methods are developed for MIMDcomputer architectures and are based on a former serialimplementation of the Lagrangian approach [3, 4, 5].Parallelization of the solution algorithm for the set ofcontinuity, Navier{Stokes and turbulence model equa-tions is carried out by application of a domain decompo-sition method to the block structure of the numericalgrid as proposed by Peri�c et al. in [10, 9]. For theLagrangian solution algorithm 3 di�erent paralleliza-tion methods are investigated and compared with eachother. Results of performance evaluations are given fortwo typical test cases, which are calculated on a widerange of numbers of processors of a massively parallelMIMD machine.2. INTRODUCTIONRecently Lagrangian simulation has become an ef-�cient and widely used method for the calculation ofvarious kinds of 2{ and 3{dimensional disperse mul-tiphase
ows (e.g. gas{particle or gas{droplet
ows).On the other hand Lagrangian simulation of coupledmultiphase
ow systems with strong phase interactionsare among the applications with the highest demands

on computational e�ort and system resources in the�eld of computational
uid dynamics. Massively paral-lel computers (MIMD) provide new capabilities for ef-�cient and cost{e�ective multiphase
ow calculations.However, special parallel solution algorithms have to bedeveloped in order to use the computational power ofMIMD computers. The main problem in the paralleliza-tion of Lagrangian solvers is the complex dependencebetween the
uid
ow data and the data requirements ofthe solution algorithm for the particles/droplets equa-tion of motion. The problem arises from the distributedstorage of the
uid
ow data over the processor nodesof the parallel computer system in accordance with thedomain decomposition method. This data dependencehas to be solved by an e�cient parallel solution algo-rithm while introducing a minimum of inter-processorcommunication.3. THE EULERIAN/LAGRANGIAN MODELFOR DISPERSE MULTIPHASE FLOWS3.1. Fundamental equations of
uid motionFor the construction of the physical model we as-sume, that the turbulent two{phase
ow under consid-eration is dilute, but the particle loading is apprecia-ble. So particle{particle interaction can be neglected,but the e�ects of the particles on the
uid
ow has tobe taken into account. The two{phase
ow is steady,incompressible and isothermal. The
uid phase hasconstant physical properties and is Newtonian. Un-der these assumptions the time{averaged form of thegoverning
uid phase equations can be cast into thefollowing form of the general transport equation :

@@x (�F uF �) + @@y (�F vF�) = @@x �� @�@x�+ @@y �� @�@y �+ S� + SP� (1)where � stands for the di�erent variables uF , vF , kand ". The terms S� and � represent the source termand the e�ective di�usion coe�cient, respectively, andSP� represents the source term due to the momentumexchange between phases. This last term is calculatedby solving the Lagrangian equation of particle motionusing the PSI{cell{method [1, 2]. The source term ex-pressions are summarized in Table 1 for di�erent vari-ables S�.� S� SP� �1 0 0 0uF @@x �� @uF@x �+ @@y �� @vF@x �� @p@x SPuF �effvF @@x �� @uF@y �+ @@y �� @vF@y �� @p@y SPvF �effk Pk � �F " 0 �t�k" "k (C"1 Pk � C"2 �F ") 0 �t�"Pk = �t�2 � ��@uF@x �2 + �@vF@y �2�+ �@uF@y + @vF@x �2�SPui = � 1Vij PmP _NP [uPi;out � uPi;in�gi(1� �F�P)(tout � tin)iTable 1: Expressions for source terms and e�ective dif-fusion coe�cientsFor modelling of
uid turbulence the standard k{"turbulence model together with isotropic eddy viscos-ity and standard model constants are used. The in
u-ence of particle motion on
uid turbulence is neglected(SPk = SP" = 0).3.2. Equations of motion of the disperse phaseThe disperse phase is treated by the Lagrangian ap-proach where a large number of particles are followed intime along their trajectories through the
ow domain.The particle trajectories are determined by solving theordinary di�erential equations for the particle location,

the translational and rotational velocities. For the for-mulation of the particles equations of motion only thedrag force, the lift force due to particle rotation (Mag-nus force) and the gravitational force are taken intoaccount. It is assumed that other forces like the Bassethistory force can be neglected due to a small densityratio �F =�P .d xPdt = uP ; d yPdt = vPddt � uPvP � = 34 � �F�P d2P ReP �CD(ReP) � uF � uPvF � vP �+ CM(�) � vF � vPuP � uF ��+ �P � �F�P � gxgy � (2)with : ReP = dP vrel� ; � = 12 dP!vrelvrel =q(uF � uP)2 + (vF � vP)2The drag coe�cient CD, the lift coe�cient of theMagnus force CM and other model constants, e.g. resti-tution coe�cient k and coe�cient of kinetic friction f inthe particle{wall interaction model, are taken from lit-erature [3]. The e�ect of turbulence of the
uid
ow onthe motion of the disperse phase is modelled by the so{called Lagrangian stochastic{deterministic (LSD) tur-bulence model proposed by Sch�onung [12] and Milojevi�c[6].3.3. Solution algorithmThe above equations of
uid motion are solved bythe FAN{2D program package developed by Peri�c andLilek [11]. The code is designed for the prediction oftwo-dimensional (plane or axisymmetric), laminar orturbulent, incompressible
ows of Newtonian
uid indomains of arbitrary geometry. The numerical solu-tion method implemented is based on the �nite volumediscretization of the governing equations. Character-istics of this method are : non{orthogonal, boundary�tted arbitrary numerical grids; block structured nu-merical grids for optimum geometrical approximationof complex
ow �elds and for parallelization purposes;colocated arrangement of variables on numerical grids;

Cartesian vector and tensor components; segregated so-lution approach of SIMPLE kind [7]; acceleration ofconvergence by use of several levels of grid re�nement[8].The original program code is extended by introduc-tion of the particle momentum source terms in the mo-mentum equations of
uid motion. E�ciency of thesolution method is ensured by implementing an opti-mized underrelaxation practice concerning not only the
uid variables but also the additional source terms.The equations of motion of the dispersed phaseare solved by using a standard Runge{Kutta solutionscheme of 4th order accuracy as already used in pre-vious work [3, 5]. A converged solution for both the
uid and disperse phase
ow �eld is then obtained byan iterative solution procedure :1. First a converged solution of the gas
ow �eld iscalculated without the source terms of the dispersephase.2. A large number of particles is traced through the
ow �eld, and the values of the source terms arecalculated for all control volumes of the numericalgrid.3. The
uid
ow �eld is recalculated by consideringthe source terms of the disperse phase, where ap-propriate underrelaxation factors have to be ap-plied.4. Steps 2 and 3 are repeated until convergence isreached.4. THE PARALLEL SOLUTION ALGORITHM4.1. General remarks on parallelization require{mentsNormally calculations on parallel computers needmore numerical operations to obtain a solution with acertain accuracy than calculations on a single processoror workstation. Further processor nodes in a parallelcomputer spend time on node communication and waitfor delivery of data from neighbouring processors. So,e�ciency of a parallel algorithm depends on :� Numerical e�ciency : describes the increase ofthe number of numerical operations due to changesin the algorithm necessary for parallelization;

� Parallel e�ciency : describes the relative in-crease in calculation time due to communicationbetween processor nodes;� E�ciency of load balancing : describes the ef-fect, that processors have to wait for each other dueto unbalanced numerical and/or communicationalworkload distribution among the processors of theparallel computer. In the grid partitioning methodunbalanced workload distribution is mainly causedby the di�erent numbers of control volumes pergrid block/processor node. In the case of parallelcomputation of disperse multiphase
ows there canbe other reasons for poor load balancing. In de-pendence on the used parallelization method thesereasons can be
ow separation, great changes inthe mean particle concentration in the
ow domainand the interaction of disperse particles with
uidturbulence.Therefore the optimization of a parallel algorithm de-pends on the optimization of all e�ciency factors andnot only of the parallel e�ciency.4.2. Parallelization of the Navier{Stokes solverThe parallelization of the solution algorithm for theset of continuity, Navier{Stokes and turbulence modelequations is carried out by parallelization in space, thatmeans by application of the domain decomposition orgrid partitioning method. This parallelization methodwas proposed e.g. by Peri�c [9] and Schreck [10] andranks among the established and thorough investigatedmethods in the �eld of high performance computing.Grid partitioning methods were investigated in the pastby many authors and so this parallelization algorithmwas applied without signi�cant changes.The method is based on the further partitioning ofthe
ow domain analogous to the block structuring ofthe numerical grid which is used for initial geometricalapproximation of the
ow domain (see Fig. 1). Theresulting subdomains are assigned to the single proces-sor nodes of the parallel computer. Because we considerMIMD computers with distributed storage of data, eachprocessor node has to store not only the
uid
ow datainside the grid block assigned to this node but also thevalues of
uid
ow characteristics of the neighbouringgrid blocks along the common boundaries of the gridsubdomains. Each time the data along the grid blockboundaries are altered by one processor they have to

control volume with variable

additional control volumeFigure 1: Domain decomposition for the numerical grid.be exchanged between the adjacent processor nodes byinter{processor communication.Using this parallelization method for the solution ofthe equations of motion of the
uid phase the proces-sor nodes of the parallel computer can calculate the
uid
ow �eld on their grid subdomains almost inde-pendently. Only after each inner iteration cycle of theiterative solution procedure for the linear set of equa-tions the
uid
ow data at the subdomain boundarieshave to be exchanged. Further increase in parallel ef-�ciency can be achieved by exchanging data at blockboundaries only after each outer iteration cycle of thesolution procedure. Although the use of \old" values atthe block boundaries during one outer iteration cycledecreases numerical e�ciency, a greater overall perfor-mance of the algorithm can be observed [9] for certainclasses of
uid
ow phenomena.4.3. Parallelization methods for the LagrangianapproachThe main problem in parallelization of Lagrangiansolvers is the complex dependence between the
uid
ow data and the data requirements of the solution al-gorithm for the particles/droplets equation of motion.Because the location of a particle trajectory in the
owdomain is prior unknown, a forecast about the
uid
owdata requirements for particle trajectory calculation cannot be made. Considering a MIMD computer with localnode memory and with distributed storage of the
uid
ow data in accordance with the domain decompositionmethod a parallel solution algorithm for Lagrangian

simulation has either to provide all the
uid
ow datain the local node memory of all processor nodes or thedata which are necessary for particle trajectory calcu-lations have to be delivered from other processor nodesat the moment when they are required. This results ina number of di�erent parallelization methods.
Host

each node processor calculates trajectories in the whole flow
domain; fluid data are stored in each node

Node 1 Node 2 Node 3 Node N

grid data
blocks 1...N

fluid data
block 1

...
block N

T
a
s
k
s

M
e
m
o
r
y

fluid data
block 1

...
block N

fluid data
block 1

...
block N

fluid data
block 1

...
block N

grid data
blocks 1...N

grid data
blocks 1...N

grid data
blocks 1...NFigure 2: Parallelization method 1 for the Lagrangiansolver.Method 1 :In this method we introduce a host{node or divide{and{conquer parallelization scheme where the host gen-erates the starting locations of the dispersed particleswithin the
ow domain and distributes them to thenodes for trajectory and source term calculation. Thenodes check the initial location of the particles on thenumerical grid and calculate trajectories, the corre-sponding contributions to the source terms and to themean values of particle phase characteristics (e.g. vol-ume concentration, mean particle velocity and meanparticle diameter). After particle trajectory calcula-tions the host sums up the contributions to the sourceterms and mean values over all nodes and over all con-trol volumes of the numerical grid. Then the valuesof the source terms are submited to the Navier{Stokessolver for recalculation of the modi�ed
uid
ow. Inorder to provide the necessary
uid
ow data for theparticle trajectory calculations the whole
uid
ow �eldis stored in each processors node memory.Load balancing for this method is automatically es-tablished due to the large number of calculated particletrajectories in comparison to the number of processornodes. Although this method introduces a very smallamount of node communication due to the distributionof initial values and collection of source terms and mean

values of the disperse phase it has a major disadvantagewhich makes it applicable only to networked worksta-tion clusters with large amount of memory or for mul-tiphase
ow calculations on rather small or coarse nu-merical grids. The redundant storage of
uid
ow �eldson each processor node leads to high demands on localnode memory, which can not be satis�ed on massivelyparallel MIMD machines.
Host

Node 1 Node 2 Node 3 Node N

T
a
s
k
s

M
e
m
o
r
y

grid data
block 1

fluid data
block 1

interface
data

each node processor calculates trajectories on the "own" grid block
particle state at interfaces is submited to the neighbouring processor

grid data
block 2

grid data
block 3

grid data
block N

interface
data

interface
data

interface
data

fluid data
block 2

fluid data
block 3

fluid data
block NFigure 3: Parallelization method 2 for the Lagrangiansolver.Method 2 :For the implementation of the Lagrangian solver ona massively parallel MIMD machine like the ParsytecPower{GC it is necessary to let the Lagrangian solveroperate on a distributed set of
uid
ow data becausethe node memory on such machines is rather limitedand does not allow the storage of the whole �elds of
uid
ow data in each processor node. In the secondmethod we use the same assignment of processor nodesto the blocks of the numerical grid as used by the gridpartitioning method for the Navier{Stokes solver. Ineach node the
uid
ow data of the corresponding gridblock are stored. Now the node processors calculateparticle trajectories from their entry point to the cur-rent grid block (from an inlet cross section or from aboundary to a neighbouring grid block) to their exitpoint (block boundary or outlet cross section). Theamount of communication between nodes is again verysmall because it is reduced to the delivery of the par-ticle state to the neighbouring processor in the case ifa particle trajectory leaves the current block through aboundary which is a block interface with a neighbour-ing grid block. The calculation of global sums over all

processor nodes is no longer necessary because the con-tributions to the source term �elds are calculated andstored at the right location during the calculation pro-cess.Load balancing can be a serious disadvantage of thismethod. That can be illustrated by a simple exampleof a pipe or channel
ow where grid blocks are arrangedone behind the other along the pipe or channel axis. Inthis case some start{up time is required until the cal-culation process propagates throughout the processorsof the parallel computer. The same situation can beobserved at the end of the calculation process whereall processors have to wait until the last processor atthe end of the pipe or channel has �nished its calcu-lation. Similiar situations of poor load balancing canoccur for
ows around nozzles, recirculating and highlyseparated
ows where most of the numerical e�ort hasto be performed by a small subset of all processors used.
Host

Node 1 Node 2 Node 3 Node N

M
e
m
o
r
y

Interrupt-
handler

Interrupt-
handler

Interrupt-
handler

Interrupt-
handler

fluid data
block 1

fluid data
block 2

fluid data
block 3

fluid data
block N

each node processor calculates trajectories in the whole flow domain;
fluid data have to be exchanged between processors

T
a
s
k
s

grid data
block 1

grid data
block 2

grid data
block 3

grid data
block NFigure 4: Parallelization method 3 for the Lagrangiansolver.Method 3 :Since method 1 is not a fully parallelized methoddue to non{distributed storage of
uid
ow data andsince load balancing problems for method 2 for thenamed class of multiphase
ow phenomena is expected,a third parallelizationmethod is investigated. This par-allelization method again uses the host{node program-ming model and the same distribution of
uid
ow dataamong the nodes of the parallel machine as in the gridpartitioning method of the Navier{Stokes solver. Butin contrast to the second method a processor node cal-culates a particle trajectory from its entry point to the
ow domain to its �nal exit location at an outlet cross

section. While the particle is moving in the processors\own" grid block,
uid
ow data needed for the particletrajectory calculation can be taken from the processorslocal node memory. If the trajectory leaves this gridblock,
uid
ow data have to be made available by nodecommunication. This access method for the
uid
owdata can be implemented in two di�erent ways :a) If the EXPRESS message passing library is used asthe basis for parallelization a neat solution of theproblem can be implemented by using a special fea-ture of EXPRESS. EXPRESS message passing li-brary o�ers a functionality of so{called message in-duced procedure calls (remote execution) or inter-rupt messages. A special procedure is registered bythe EXHANDLE{function on each processor node.Then this procedure can be executed by any otherprocessor node of the parallel computer simply bysending a message with a special message tag. Us-ing this functionality of remote execution of theEXPRESS message passing standard it is possibleto implement an e�cient handling of distributed
uid
ow data. Sending a message with a spe-cial message tag together with the control volumecoordinates of the required
uid
ow data to theprocessor with the appropriate grid block numberstarts a message induced procedure at that pro-cessor with the same adress space like the mainroutine on that processor. While this special pro-cedure is executed the particle trajectory calcula-tion process on the processor is interrupted. Thespecial
uid
ow data handling procedure now canread the required data from the local node memoryand sends them back to the calling processor.b) Unfortunatly other popular message passing li-braries like PVM or MPI don't yet support compa-rable features of remote execution. In implemen-tations of this parallelization method based on oneof these message passing standards the functional-ity of remote execution has to be substituted. Thiscan be realized by starting an additional memoryhandler task on each processor node. The memoryhandler provides
uid
ow data of the grid blockcorresponding to the processor node number andwaits in a permanent message loop for requestsfrom other processor nodes. In this way requestsfor
uid
ow data can be answered using normalinter{processor communication and without inter-

ruption of the particle trajectory calculation of thenode program.The algorithm described above can be enhanced byvarious caching and look{forward algorithms for thetransfered
uid
ow data. A similiar algorithm can beused for the calculation and distributed storage of theglobal source terms due to phase interaction and for themean characteristics of the disperse phase.The method requires a larger amount of node commu-nication than the �rst two methods, but it was found towork with satisfactory e�ciency. It operates with dis-tributed
uid
ow data and therefore needs the sameamount of node memory as the grid partitioning al-gorithm of the Navier{Stokes solver (implementationsbased on PVM or MPI need twice the amount of nodememory used by the Navier{Stokes solver). Further,the method has automatically a good load balancingdue to the large number of calculated particle trajecto-ries in comparison with the number of processors.5. TEST PLATFORM AND FORMULATIONOF TEST CASESIn order to compare the di�erent parallelizationmethods for the Lagrangian approach calculations ona massively parallel computer were carried out for twotypical test cases.5.1. Test case 1As a �rst test case we use a 2{dimensional, downwarddirected channel
ow in a rectangular duct. The ratio ofthe channel height to the channel length is H=L = 1=6.For the
uid phase we use air with normal aerodynam-ical properties and for the disperse phase we assumesolid particles with a density ratio of �F =�P = 1=2000and a particle diameter of dP = 400�m. At the inletcross section the
uid velocity pro�le and the pro�le ofparticle volume concentration are homogeneous.The
ow domain is divided into 128� 32 control vol-umes on the �rst grid level and 256�64 control volumeson the second grid level. For parallel computation thegrid is divided into 1 : : :128 grid blocks while the num-ber of control volumes remains unchanged.5.2. Test case 2The aim of the second test case is to investigate thedependence of the e�ciency of the various paralleliza-tion methods on the multiphase
ow regime. As an ex-ample of a highly separated two{phase
ow we consideran axisymmetric, upward directed pipe
ow around afull{cone nozzle. The ratio of the pipe radius to the

pipe length is again R=L = 1=6. The nozzle is locatedat the pipe (symmetry) axis at x = 13L and the jet fromthe full{cone nozzle with a cone angle of 90� is directeddownward. For the
uid phase we use air with a homo-geneous velocity pro�le at the lower inlet cross sectionwith uF = 4m=s. The disperse phase is representedby water droplets with an initial velocity of 8m=s andwith a given droplet diameter distribution in the rangefrom 30�m : : :1400�m. The numbers of control vol-umes, grid levels and grid blocks of the numerical gridare the same as in test case 1.5.3. Test platformMost of the implementation e�ort and �rst perfor-mance evaluation was carried out on a networked work-station cluster of 3 HP 9000/735 linked by a 100 Mbit/sFDDI network. Each workstation in the cluster has aminimum node memory of about 80 Megabyte. Theworkstations ran under HP{UX 9.05 with EXPRESSVers. 3.2.5 and PVM Vers. 3.2.6 message passing stan-dards.For the �nal performance evaluations for the two testcases we used the massively parallel MIMD computerParsytec Power{GC{128 at the Technical UniversityChemnitz. The basic characteristics of this parallel ma-chine are :{ Node processors : Motorola PowerPC 601{80 ;Maximumnumber of processors : 128 ; Node mem-ory : 32 MB{ Communication : 35 MB/s sustained; 80 MB/speak ; Message setup time : 5�s ; Minimum net-work latency : 40�sThe machine runs under the operating system Parix1.2{PPC (a UNIX derivative for this kind of parallelcomputers) with Power{PVM Vers. 1.1 (a subset ofPVM Vers. 3.2 which excludes support for heteroge-neous computer platforms) and Power{MPI Vers. 1.0.Unfortunatly Power{EXPRESS was not yet availablefor the Parsytec Power{GC{128 due to a bug in themessage passing library.6. RESULTS AND DISCUSSIONFig. 5 | Fig. 10 show the results of the performanceevaluation tests on the Parsytec Power{GC{128 for thetwo test cases and for all 3 investigated parallelizationmethods. For the performance evaluation tests execu-tion time of one iteration cycle of the Lagrangian parti-cle trajectory solver was measured. The start{up time

of the PVM{system, the execution time of the Navier{Stokes solver and the time spent on I/O{operationsfor postprocessing purposes were not included in thetime measurements. From the measured execution time(cpu{time in seconds) the speed{up SN and the e�-ciency EN :SN = Execution time on 1 proc.Execution time on N proc. ; EN = SNNfor the di�erent parallelization methods were calcu-lated. It has to be pointed out that for the given testcases the numerical e�ort (number of numerical opera-tions) of the Lagrangian solver doesn't remain constantwith increase of the number of grid blocks on the nu-merical grid. The implemented method for particle lo-calization on the numerical grid leads to an increase inprogram e�ciency proportional to the number of gridblocks independent of the number of processors usedfor program execution. This additional increase in pro-gram e�ciency is the explanation for the high speed{upand e�ciency values that occur especially for the secondtest case (Fig. 9| Fig. 10). Nevertheless the measuredperformance results can serve for a direct comparisonof the 3 investigated parallelization methods.Fig. 5 | Fig. 7 show the results of the performanceevaluation tests for test case 1 and for parallelizationmethods 1{3. In order to show the in
uence of thenumerical workload on the e�ciency of the various par-allelization schemes calculations were carried out fortwo di�erent numbers of particle trajectories (5000 and20000). But the comparison of these 2 series of calcu-lations showed only minor di�erences for all 3 paral-lelization methods. Therefore only the results for cal-culations of 20000 particle trajectories are shown in thispaper.Best results were obtained by the parallelizationmethod 1 with a speed{up of 47.1 on 64 processornodes. But as already mentioned above the method 1 isbasically the serial Lagrangian approach adopted to theparallel machine and does not support the distributedstorage concept for the
uid
ow data. Thus method 1is not applicable to numerical grids with a �ner grid res-olution or to multiphase
ows in geometrically complex
ow domains due to limited node memory on MIMDcomputers. Method 2 and 3 show similar performanceresults with a maximum speed{up of about 18 and ane�ciency of about 0.3 for calculations on 64 processornodes.

11 2 4 8 16 32 64 128No. of Processors0450100200300400ExecutionTime[min] � � � � � � � �...2 2 2 2 2 2 2 2..3 3 3 3 3 3 3..�... Method 12........ Method 23... Method 3..Figure 5: Execution time for parallelizationmethod 1{3for the �rst test case.
11 2 4 8 16 32 64 128No. of Processors05010203040Speed{up � � � � � � � �...2 2 2 2 2 2 2 2........ .3 3 3 3 3 3 3..Figure 6: Speed{up for parallelization method 1{3 forthe �rst test case.
11 2 4 8 16 32 64 128No. of Processors01.20.20.40.60.81E�ciency � � � � � � � �...2 2 2 2 2 2 2 2........3 3 3 3 3 3 3...Figure 7: E�ciency for parallelization method 1{3 forthe �rst test case.

11 2 4 8 16 32 64 128No. of Processors028005001000150020002500ExecutionTime[min] � � � � � � � �...2 2 2 2 2 2 2 2..3 3 3 3 3 3 3...Figure 8: Execution time for parallelizationmethod 1{3for the second test case.
11 2 4 8 16 32 64 128No. of Processors01754080120160Speed{up � � � � � � � �..2 2 2 2 2 2 2 2........ .3 3 3 3 3 3 3..Figure 9: Speed{up for parallelization method 1{3 forthe second test case.
11 2 4 8 16 32 64 128No. of Processors01.80.40.81.21.6E�ciency � � � � � � � �..2 2 2 2 2 2 2 2........3 3 3 3 3 3 3...Figure 10: E�ciency for parallelization method 1{3 forthe second test case.

The strong decrease in performance of all the meth-ods 1{3 on 128 processor nodes does not result fromconstruction or implementation of the parallelizationmethods but is mostly due to a known bottleneck fornode communication between the upper and the lower64 processor partition of the Parsytec Power{GC{128.Less performance for calculations on 8 processor nodesin comparison with calculations on 16 processor nodeswas found to be due to the arrangement of the gridblocks of the numerical grid. For calculations on 16processor nodes the grid blocks are arranged in 2 rowsper 8 grid blocks in the x{direction. This leads to a dis-tribution of the inlet cross section (x=0) to 2 di�erentprocessor nodes and therefore to an increase in programperformance.Fig. 8 | Fig. 10 show the results of the performanceevaluation tests for the second test case. Again the bestresults could be achieved for method 1 (the serial La-grangian approach adopted to the parallel machine).As already mentioned above the large speed{up valuesand the e�ciency values greater 1 result from a reduc-tion of the numerical e�ort due to higher e�ciency ofthe particle localization algorithm on block structuredgrids with a larger number of grid blocks.Further the results for the method 2 show a substan-tial deterioration in comparison to the other methodsand to the �rst test case due to worser load balancingfor separated multiphase
ows.In this method the com-putational power of a processor is assigned to a �xedgrid block of the numerical grid. So the execution timeof the program is mostly determined by the computa-tional time spent by the processor which is assigned tothe grid block with the highest particle concentrationsinside the
ow domain.The results for method 3 show similar performance ofthe parallelization method in comparison with method1. Only for a larger number of processors (32 and more)results show a decrease in e�ciency (Fig. 10) due to thelarger amount of inter{processor communication neces-sary in the third parallelization method. Further theresults of the second test case for method 3 show, thatthe method is applicable independent of the
ow regimeof the investigated disperse multiphase
ow even in thecase of
ow separation or greater changes in particleconcentration in the
ow domain.7. CONCLUSIONSThe test cases for parallelization methods 1{3 showperformance results which are typical for CFD applica-

tions on massively parallel MIMD computers. Althoughthe parallel e�ciency decreases for calculations on alarger number of processor nodes, the results show theapplicability of the presented methods for Lagrangianmultiphase
ow calculations on parallel computers withdistributed memory and a moderate number of high{performance processors. In this case remarkable speed{up can be achieved which makes calculation of complexmultiphase
ows possible in reasonable time. Especiallythe results for the third parallelizationmethod show theuniversal applicability of the method for parallel com-putations of disperse multiphase
ows. Because paral-lelization of the Lagrangian approach is carried out byparallelization in space using the domain decompositionmethod the described algorithm is applicable to steadyand unsteady
ow calculations as well.8. AcknoledgementThe authors are indebted to Prof. M. Peri�c forallowing the use of his CFD code FAN{2D in thisresearch. Further this work was supported by theDeutsche Forschungsgemeinschaft (DFG) under Con-tract No. Fr 1069/3{1.References[1] Crowe C.T., Sharma M.P., Stock D.E., 1977, \TheParticle{Source{In Cell (PSI{Cell) Model for Gas{Droplet Flows", Trans. of ASME, J. Fluids Eng.,Vol. 99, pp. 325{332.[2] Crowe C.T., 1982, \REVIEW | NumericalModels for dilute Gas{Particle Flows," Trans. ofASME, J. Fluids Eng., Vol. 104, pp. 297{303.[3] Frank Th, 1992 \Numerische Simulation derfeststo�beladenen Gasstr�omung im horizonta-len Kanal unter Ber�ucksichtigung von Wan-drauhigkeiten", PhD Thesis, Techn. UniversityBergakademie Freiberg, Germany.[4] Frank Th., Schulze I., 1994, \Ein numerischesVerfahren zur Berechnung disperser Mehrphasen-str�omungen auf parallelen Hochleistungs-rechnern", Proc. Arbeitssitzung des GVC{Fachausschusses Mehrphasenstr�omungen, Febru-ary 17{18, 1994, W�urzburg, Germany.[5] Frank Th., Schulze I., 1994, \Numerical simulationof gas{droplet
ow around a nozzle in a cylindrical

chamber using Lagrangian model based on a multi-grid Navier{Stokes solver", International Sympo-sium on Numerical Methods for Multiphase Flows,June 19{23, 1994, Lake Tahoe (NV), USA.[6] Milojevi�c D., 1990, \Lagrangian Stochastic{Deter-ministic (LSD) Predictions of Particle Dispersionin Turbulence," Part. Part. Syst. Charact., Vol. 7,pp. 181{190.[7] Patankar S.V., 1980, \Numerical Heat Transferand Fluid Flow", McGraw{Hill, New York.[8] Peri�c M., 1989, \A Finite Volume MultigridMethod for Calculating Turbulent Flows," Proc.7th Symposium on Turbulent Shear Flows, Vol. 1,pp. 7.3.1.{7.3.6., Stanford University, USA.[9] Peri�c M., 1992, \Ein zum Parallelrechnen geeigne-tes Finite{Volumen{Mehrgitterverfahren zur Be-rechnung komplexer Str�omungen auf blockstruk-turierten Gittern mit lokaler Verfeinerung", Ab-schlu�bericht zum DFG{Vorhaben Pe 350/3{1imDFG{Habilitandenstipendiumprogramm, Stan-ford University, USA.[10] Schreck E., Peri�c M., 1992, \Parallelization of im-plicit solution methods", ASME Fluids Engineer-ing Conference, June 22{23, 1992, Los Angeles(CA), USA.[11] Peri�c M., Lilek �Z., 1993, \Users Manual for theFAN{2D Software for the Calculation of Incom-pressible Flows", Institut f�ur Schi�bau der Uni-versit�at Hamburg, Germany.[12] Sch�onung B., 1987, \Comparison of Di�erent Dis-persion Models for Particles in Lagrangian andEulerian Prediction Codes," In : Proceedings ofthe International Conference on Fluid Mechanics,Peking, July 1.-4., 1987, Peking University Press,China.

