2nd Int. Symposinm on Numerical Methods for Multiphase Flows,

ASME Fluids Engineering Division Summer Meeting,

July 7 11, 1996, San Diego, CA, U.S.A.
Proceedings, FED Vol. 236, Vol. 1, pp. 11 20

PARALLEL SOLUTION ALGORITHMS FOR LAGRANGIAN
SIMULATION OF DISPERSE MULTIPHASE FLOWS

Th. Frank , E. Wassen

Technical University of Chemnitz—Zwickau

Faculty of Mechanical Engineering and Process Technology

Research Group of Multiphase Flow

Chemnitz, Germany

1. ABSTRACT

The paper deals with different methods for the par-
allelization of numerical algorithms which are widely
used for the prediction of disperse multiphase flows (e.g.
gas particle or gas droplet flows). The underlying nu-
merical algorithm is based on the Lagrangian (PST cell)
approach, where trajectories of a large number of par-
ticles/droplets are calculated from the equations of mo-
tion of the disperse phase along with the continuity and

momentum equations of the fluid phase.

All parallelization methods are developed for MTMD
computer architectures and are based on a former serial
implementation of the Lagrangian approach [3, 4, 5].
Parallelization of the solution algorithm for the set of
continuity, Navier Stokes and turbulence model equa-
tions is carried out by application of a domain decompo-
sition method to the block structure of the numerical
grid as proposed by Peri¢ et al. in [10, 9]. For the
Lagrangian solution algorithm 3 different paralleliza-
tion methods are investigated and compared with each
other. Results of performance evaluations are given for
two typical test cases, which are calculated on a wide
range of numbers of processors of a massively parallel
MIMD machine.

2. INTRODUCTION

Recently Lagrangian simulation has become an ef-
ficient and widely used method for the calculation of
various kinds of 2 and 3 dimensional disperse mul-
tiphase flows (e.g. gas particle or gas droplet flows).
On the other hand Lagrangian simulation of coupled
multiphase flow systems with strong phase interactions

are among the applications with the highest demands

on computational effort and system resources in the
field of computational fluid dynamics. Massively paral-
lel computers (MTMD) provide new capabilities for ef-
ficient and cost effective multiphase flow calculations.
However, special parallel solution algorithms have to be
developed in order to use the computational power of
MIMD computers. The main problem in the paralleliza-
tion of Lagrangian solvers is the complex dependence
between the fluid flow data and the data requirements of
the solution algorithm for the particles/droplets equa-
tion of motion. The problem arises from the distributed
storage of the fluid flow data over the processor nodes
of the parallel computer system in accordance with the
domain decomposition method. This data dependence
has to be solved by an efficient parallel solution algo-
rithm while introducing a minimum of inter-processor

communication.

3. THE EULERIAN/LAGRANGIAN MODEL
FOR DISPERSE MULTIPHASE FLOWS

3.1. Fundamental equations of fluid motion

For the construction of the physical model we as-
sume, that the turbulent two phase flow under consid-
eration is dilute, but the particle loading is apprecia-
ble. So particle particle interaction can be neglected,
but the effects of the particles on the fluid flow has to
be taken into account. The two phase flow is steady,
incompressible and isothermal. The fluid phase has
constant physical properties and is Newtonian. Un-
der these assumptions the time averaged form of the
governing fluid phase equations can be cast into the

following form of the general transport equation :

0 ¢} ¢} od
%(pp up ®) + 3_y(pp vpd) = I (F ﬁ_r)

0 0P
+ — (T =) +Ss + 5§ (1)
dy dy

where ® stands for the different variables up, vp, k
and . The terms S3 and T represent the source term
and the effective diffusion coefficient, respectively, and
SE vepresents the source term due to the momentum
exchange between phases. This last term is calculated
by solving the Lagrangian equation of particle motion
using the PST cell method [1, 2]. The source term ex-
pressions are summarized in Table 1 for different vari-

ables Sg.

S | Sp SE r
1 0 0 0
2] du 2] v 2]
up | g (TR + 40 (DFE) — 58 | S| pegs
a du 2] v 2]
VP | 3 (r a—f) + a5y (r agf) — 5 | Soe | Bers
k Pk — PFE 0 5—;
£ %(051 Pk — (752 PF 6) 0 Z—f
Aup 2 dup 2 Aup dup 2
Pr=peq2- (W)"’(ay) +(ay+ar)
SZI,D, = 7{/1_ Z mPNP [“Pi,out — UPpjin
7(]7(] - Z_Z)(tout - 7L7n):|

Table 1: Expressions for source terms and effective dif-
fusion coefficients

For modelling of fluid turbulence the standard k ¢
turbulence model together with isotropic eddy viscos-
ity and standard model constants are used. The influ-

ence of particle motion on fluid turbulence is neglected

(S =8P =0).

3.2. Equations of motion of the disperse phase
The disperse phase is treated by the Lagrangian ap-

proach where a large number of particles are followed in
time along their trajectories through the flow domain.
The particle trajectories are determined by solving the

ordinary differential equations for the particle location,

the translational and rotational velocities. For the for-
mulation of the particles equations of motion only the
drag force, the lift force due to particle rotation (Mag-
nus force) and the gravitational force are taken into
account. Tt 13 assumed that other forces like the Basset

history force can be neglected due to a small density
ratio pr/pp.

dl‘p _ dyp _
7 TR
d | up 3 vpp Up — up
— = - Re Cp(Re
dt [vp] 4ppds or (nl PP)[vp — Up
+ CM(O')[Vg —Vp :|)
Uup —uUp
L pror [qr] @)
e Ty
with :
dp?)y‘el _ 1 dpw

RQP =)

2 Ve

v
Vpel = \/(u;m — 1/,p)2 + (vp — 1)p)2

The drag coefficient Cp, the lift coefficient of the
Magnus force Cyr and other model constants, e.g. resti-
tution coefficient k and coefficient of kinetic friction fin
the particle wall interaction model, are taken from lit-
erature [3]. The effect of turbulence of the fluid flow on
the motion of the disperse phase is modelled by the so
called TLagrangian stochastic deterministic (L.SD) tur-

bulence model proposed by Schonung [12] and Milojevié
[6].

3.3. Solution algorithm

The above equations of fluid motion are solved by
the FAN 2D program package developed by Perié¢ and
Lilek [11]. The code is designed for the prediction of
two-dimensional (plane or axisymmetric), laminar or
turbulent, incompressible flows of Newtonian fluid in
domains of arbitrary geometry. The numerical solu-
tion method implemented is based on the finite volume
discretization of the governing equations. Character-
istics of this method are : non orthogonal, boundary
fitted arbitrary numerical grids; block structured nu-
merical grids for optimum geometrical approximation
of complex flow fields and for parallelization purposes;

colocated arrangement of variables on numerical grids;

Cartesian vector and tensor components; segregated so-
lution approach of SIMPLE kind [7]; acceleration of
convergence by use of several levels of grid refinement
[8]-

The original program code is extended by introduc-
tion of the particle momentum source terms in the mo-
mentum equations of fluid motion. Efficiency of the
solution method is ensured by implementing an opti-
mized underrelaxation practice concerning not only the
fluid variables but also the additional source terms.

The equations of motion of the dispersed phase
are solved by using a standard Runge Kutta solution
scheme of 4th order accuracy as already used in pre-
vious work [3, 5]. A converged solution for both the
fluid and disperse phase flow field is then obtained by

an iterative solution procedure :

1. First a converged solution of the gas flow field is
calculated without the source terms of the disperse

phase.

2. A large number of particles is traced through the
flow field, and the values of the source terms are
calculated for all control volumes of the numerical

grid.

3. The fluid flow field 18 recalculated by considering
the source terms of the disperse phase, where ap-
propriate underrelaxation factors have to be ap-

phed.

4. Steps 2 and 3 are repeated until convergence s

reached.

4. THE PARALLEL SOLUTION ALGORITHM

4.1. General remarks on parallelization require—
ments
Normally calculations on parallel computers need

more numerical operations to obtain a solution with a
certain accuracy than calculations on a single processor
or workstation. Further processor nodes in a parallel
computer spend time on node communication and wait
for delivery of data from neighbouring processors. So,

efficiency of a parallel algorithm depends on :

e Numerical efficiency : describes the increase of
the number of numerical operations due to changes

in the algorithm necessary for parallelization;

e Parallel efficiency : describes the relative in-
crease 1n calculation time due to communication

between processor nodes;

e Efficiency of load balancing : describes the ef-
fect, that processors have to wait for each other due
to unbalanced numerical and/or communicational
workload distribution among the processors of the
parallel computer. In the grid partitioning method
unbalanced workload distribution is mainly caused
by the different numbers of control volumes per
grid block/processor node. Tn the case of parallel
computation of disperse multiphase flows there can
be other reasons for poor load balancing. In de-
pendence on the used parallelization method these
reasons can be flow separation, great changes in
the mean particle concentration in the flow domain
and the interaction of disperse particles with fluid

turbulence.

Therefore the optimization of a parallel algorithm de-
pends on the optimization of all efficiency factors and

not only of the parallel efficiency.

4.2. Parallelization of the Navier—Stokes solver

The parallelization of the solution algorithm for the

set of continuity, Navier Stokes and turbulence model
equations is carried out by parallelization in space, that
means by application of the domain decomposition or
grid partitioning method. This parallelization method
was proposed e.g. by Perié¢ [9] and Schreck [10] and
ranks among the established and thorough investigated
methods in the field of high performance computing.
Grid partitioning methods were investigated in the past
by many authors and so this parallelization algorithm

was applied without significant changes.

The method is based on the further partitioning of
the flow domain analogous to the block structuring of
the numerical grid which is used for initial geometrical
approximation of the flow domain (see Fig. 1). The
resulting subdomains are assigned to the single proces-
sor nodes of the parallel computer. Because we consider
MIMD computers with distributed storage of data, each
processor node has to store not only the fluid flow data
inside the grid block assigned to this node but also the
values of fluid flow characteristics of the neighbouring
grid blocks along the common boundaries of the grid
subdomains. Fach time the data along the grid block

boundaries are altered by one processor they have to

NN NN

n
olele]e]e ANNMERNNNNRNNN

N

oo TS IOCOaOaOSe
NN

ofofo]o

[-] control volumewith variable [-]°
additional control volume SR

Figure 1: Domain decomposition for the numerical grid.

be exchanged between the adjacent processor nodes by
inter processor communication.

Using this parallelization method for the solution of
the equations of motion of the fluid phase the proces-
sor nodes of the parallel computer can calculate the
fluid flow field on their grid subdomains almost inde-
pendently. Only after each inner iteration cycle of the
iterative solution procedure for the linear set of equa-
tions the fluid flow data at the subdomain boundaries
have to be exchanged. Further increase in parallel ef-
ficiency can be achieved by exchanging data at block
boundaries only after each outer iteration cycle of the
solution procedure. Although the use of “old” values at
the block boundaries during one outer iteration cycle
decreases numerical efficiency, a greater overall perfor-
mance of the algorithm can be observed [9] for certain

classes of fluid flow phenomena.

4.3. Parallelization methods for the Lagrangian
approach

The main problem in parallelization of Lagrangian

solvers 1s the complex dependence between the fluid
flow data and the data requirements of the solution al-
gorithm for the particles/droplets equation of motion.
Because the location of a particle trajectory in the flow
domain is prior unknown, a forecast about the fluid flow
data requirements for particle trajectory calculation can
not be made. Considering a MTMD computer with local
node memory and with distributed storage of the fluid
flow data in accordance with the domain decomposition

method a parallel solution algorithm for Lagrangian

simulation has either to provide all the fluid flow data
in the local node memory of all processor nodes or the
data which are necessary for particle trajectory calcu-
lations have to be delivered from other processor nodes
at the moment when they are required. This results in

a number of different parallelization methods.

T each node processor calculatestrajectoriesin thewhole flow
g domain; fluid data are stored in each node
K | |
] [ez] s o
\ \
M grid data grid data grid data grid data
e blocks1... blocks1..N blocks1... blocks1..N
r(r; fluid data fluid data fluid data fluid data
r block 1 block 1 block 1 block 1
block N block N block N block N

Figure 2: Parallelization method 1 for the Lagrangian
solver.

Method 1 :

In this method we introduce a host node or divide
and conquer parallelization scheme where the host gen-
erates the starting locations of the dispersed particles
within the flow domain and distributes them to the
nodes for trajectory and source term calculation. The
nodes check the initial location of the particles on the
numerical grid and calculate trajectories, the corre-
sponding contributions to the source terms and to the
mean values of particle phase characteristics (e.g. vol-
ume concentration, mean particle velocity and mean
particle diameter). After particle trajectory calcula-
tions the host sums up the contributions to the source
terms and mean values over all nodes and over all con-
trol volumes of the numerical grid. Then the values
of the source terms are submited to the Navier Stokes
solver for recalculation of the modified fluid flow. In
order to provide the necessary fluid flow data for the
particle trajectory calculations the whole fluid flow field
is stored 1n each processors node memory.

Load balancing for this method i1s automatically es-
tablished due to the large number of calculated particle
trajectories in comparison to the number of processor
nodes. Although this method introduces a very small
amount of node communication due to the distribution

of imitial values and collection of source terms and mean

values of the disperse phase 1t has a major disadvantage
which makes it applicable only to networked worksta-
tion clusters with large amount of memory or for mul-
tiphase flow calculations on rather small or coarse nu-
merical grids. The redundant storage of fluid flow fields
on each processor node leads to high demands on local
node memory, which can not be satisfied on massively
parallel MTMD machines.

T each node processor calculates trgjectories on the "own" grid block
g particle state at interfaces is submited to the neighbouring processor
— |

o] [ewz| s e

\ \
> ! > > !
M grid data grid data grid data grid data
e block 1 block 2 block 3 block N
rg interface interface interface interface
r data data data data
y fluid data fluid data fluid data fluid data
block 1 block 2 block 3 block N

Figure 3: Parallelization method 2 for the Lagrangian
solver.

Method 2 :

For the implementation of the Lagrangian solver on
a massively parallel MTMD machine like the Parsytec
Power GO it 1s necessary to let the Lagrangian solver
operate on a distributed set of fluid flow data because
the node memory on such machines 1s rather limited
and does not allow the storage of the whole fields of
fluid flow data in each processor node. In the second
method we use the same assignment of processor nodes
to the blocks of the numerical grid as used by the grid
partitioning method for the Navier Stokes solver. 1In
each node the fluid flow data of the corresponding grid
block are stored. Now the node processors calculate
particle trajectories from their entry point to the cur-
rent grid block (from an inlet cross section or from a
boundary to a neighbouring grid block) to their exit
point. (block houndary or outlet cross section). The
amount of communication between nodes 18 again very
small because it is reduced to the delivery of the par-
ticle state to the neighbouring processor in the case if
a particle trajectory leaves the current block through a
boundary which is a block interface with a neighbour-

ing grid block. The calculation of global sums over all

processor nodes 1s no longer necessary because the con-
tributions to the source term fields are calculated and
stored at the right location during the calculation pro-
cess.

Load balancing can be a serious disadvantage of this
method. That can be illustrated by a simple example
of a pipe or channel flow where grid blocks are arranged
one behind the other along the pipe or channel axis. In
this case some start up time is required until the cal-
culation process propagates throughout the processors
of the parallel computer. The same situation can be
observed at the end of the calculation process where
all processors have to wait until the last processor at
the end of the pipe or channel has finished its calcu-
lation. Similiar situations of poor load balancing can
occur for flows around nozzles, recirculating and highly
separated flows where most of the numerical effort has

to be performed by a small subset of all processors used.

T each node processor calculatestrajectoriesin the whole flow domain;

a fluid data have to be exchanged between processors

S

k Interrupt-| _ _ _ |Interrupt-|_ __ _ |Interrupt-|_ _ _ _ |Interrupt-

s handler handler handler handler |
I I I
| \ ‘ |
L) | |

‘ Node 1 “ ‘ Node 2 ‘ ‘ Node 3 “ ----- NodeN }
\ ‘ ‘ \ \

M . | . . | . |

e grid data | grid data grid data | grid data |

m block 1 | block 2 block 3 | block N |

o fluid data| | fluid data fluid data| | fluid data| |

; block 1 block 2 block 3 block N

Figure 4: Parallelization method 3 for the Lagrangian
solver.

Method 3 :

Since method 1 1s not a fully parallelized method
due to non distributed storage of fluid flow data and
since load balancing problems for method 2 for the
named class of multiphase flow phenomena is expected,
a third parallelization method is investigated. This par-
allelization method again uses the host node program-
ming model and the same distribution of fluid flow data
among the nodes of the parallel machine as in the grid
partitioning method of the Navier Stokes solver. But
in contrast to the second method a processor node cal-
culates a particle trajectory from its entry point to the

flow domain to its final exit location at an outlet cross

section. While the particle is moving in the processors
“own” grid block, fluid flow data needed for the particle
trajectory calculation can be taken from the processors
local node memory. TIf the trajectory leaves this grid
block, fluid flow data have to be made available by node
communication. This access method for the fluid flow

data can be implemented in two different ways :

a) Tf the EXPRESS message passing library is used as
the basis for parallelization a neat solution of the
problem can be implemented by using a special fea-
ture of EXPRESS. EXPRESS message passing li-
brary offers a functionality of so called message in-
duced procedure calls (remote execution) or inter-
rupt messages. A special procedure is registered by
the EXHANDLE function on each processor node.
Then this procedure can be executed by any other
processor node of the parallel computer simply by
sending a message with a special message tag. Us-
ing this functionality of remote execution of the
EXPRESS message passing standard 1t is possible
to implement an efficient handling of distributed
fluid flow data. Sending a message with a spe-
cial message tag together with the control volume
coordinates of the required fllid flow data to the
processor with the appropriate grid block number
starts a message induced procedure at that pro-
cessor with the same adress space like the main
routine on that processor. While this special pro-
cedure is executed the particle trajectory calcula-
tion process on the processor is interrupted. The
special fluid flow data handling procedure now can
read the required data from the local node memory

and sends them back to the calling processor.

b) Unfortunatly other popular message passing li-
braries like PVM or MPI don’t yet support compa-
rable features of remote execution. In implemen-
tations of this parallelization method based on one
of these message passing standards the functional-
ity of remote execution has to be substituted. This
can be realized by starting an additional memory
handler task on each processor node. The memory
handler provides fluid flow data of the grid block
corresponding to the processor node number and
waits in a permanent message loop for requests
from other processor nodes. In this way requests
for fluid flow data can be answered using normal

inter processor communication and without inter-

ruption of the particle trajectory calculation of the

node program.

The algorithm described above can be enhanced by
various caching and look forward algorithms for the
transfered fluid flow data. A similiar algorithm can be
used for the calculation and distributed storage of the
global source terms due to phase interaction and for the
mean characteristics of the disperse phase.

The method requires a larger amount of node commu-
nication than the first two methods, but it was found to
work with satisfactory efficiency. Tt operates with dis-
tributed fluid flow data and therefore needs the same
amount of node memory as the grid partitioning al-
gorithm of the Navier Stokes solver (implementations
based on PVM or MPT need twice the amount of node
memory used by the Navier Stokes solver). Further,
the method has automatically a good load balancing
due to the large number of calculated particle trajecto-

ries in comparison with the number of processors.

5. TEST PLATFORM AND FORMULATION
OF TEST CASES

In order to compare the different parallelization
methods for the Lagrangian approach calculations on
a massively parallel computer were carried out for two

typical test cases.

5.1. Test case 1

As a first test case we use a 2 dimensional, downward

directed channel flow in a rectangular duct. The ratio of
the channel height to the channel length is H/L = 1/6.
For the fluid phase we use air with normal aerodynam-
ical properties and for the disperse phase we assume
solid particles with a density ratio of pp/pp = 1/2000
and a particle diameter of dp = 400 pm. At the inlet
cross section the fluid velocity profile and the profile of
particle volume concentration are homogeneous.

The flow domain is divided into 128 x 32 control vol-
umes on the first grid level and 256 x 64 control volumes
on the second grid level. For parallel computation the
grid is divided into 1...128 grid blocks while the num-

ber of control volumes remains unchanged.

5.2. Test case 2

The aim of the second test case is to investigate the

dependence of the efficiency of the various paralleliza-
tion methods on the multiphase flow regime. As an ex-
ample of a highly separated two phase flow we consider
an axisymmetric, upward directed pipe flow around a

full cone nozzle. The ratio of the pipe radius to the

pipe length is again R/L = 1/6. The nozzle is located
at the pipe (symmetry) axis at 2 = %T/ and the jet from
the full cone nozzle with a cone angle of 90° is directed
downward. For the fluid phase we use air with a homo-
geneous velocity profile at the lower inlet cross section
with up = 4m/s. The disperse phase is represented
by water droplets with an initial velocity of 8 m/s and
with a given droplet diameter distribution in the range
from 30 pm ... 1400 gm. The numbers of control vol-
umes, grid levels and grid blocks of the numerical grid

are the same as in test case 1.

5.3. Test platform

Most of the implementation effort and first perfor-

mance evaluation was carried out on a networked work-
station cluster of 3 HP 9000/735 linked by a 100 Mbit./s
FDDI network. Fach workstation in the cluster has a
minimum node memory of about 80 Megabyte. The
workstations ran under HP UX 9.05 with EXPRESS
Vers. 3.2.5 and PVM Vers. 3.2.6 message passing stan-
dards.

For the final performance evaluations for the two test
cases we used the massively parallel MTIMTD computer
Parsytec Power GC 128 at the Technical University
Chemnitz. The basic characteristics of this parallel ma-

chine are :

Motorola PowerPC 601 80 ;
Maximum number of processors : 128 ; Node mem-
ory : 32 MB

Node processors :

35 MB/s sustained; 80 MB/s

peak ; Message setup time : 5 ps ; Minimum net-

Communication :

work latency : 40 pus

The machine runs under the operating system Parix
1.2 PPC (a UNTX derivative for this kind of parallel
computers) with Power PVM Vers. 1.1 (a subset of
PVM Vers. 3.2 which excludes support for heteroge-
neous computer platforms) and Power MPT Vers. 1.0.
Unfortunatly Power EXPRESS was not yet available
for the Parsytec Power GC 128 due to a bug in the

message passing library.

6. RESULTS AND DISCUSSION

Fig. 5 Fig. 10 show the results of the performance
evaluation tests on the Parsytec Power GC 128 for the
two test cases and for all 3 investigated parallelization
methods. For the performance evaluation tests execu-
tion time of one i1teration cycle of the Lagrangian parti-

cle trajectory solver was measured. The start up time

of the PVM system, the execution time of the Navier
Stokes solver and the time spent on T/O operations
for postprocessing purposes were not included in the
time measurements. From the measured execution time

(cpu time in seconds) the speed up Sy and the effi-

clency Fy :
g Execution time on 1 proc. > Sn
ON = - - ;o v =
Execution time on N proc. ' N

for the different parallelization methods were calcu-
lated. Tt has to be pointed out that for the given test
cases the numerical effort (number of numerical opera-
tions) of the Lagrangian solver doesn’t remain constant
with increase of the number of grid blocks on the nu-
merical grid. The implemented method for particle lo-
calization on the numerical grid leads to an increase in
program efficiency proportional to the number of grid
blocks independent of the number of processors used
for program execution. This additional increase in pro-
gram efficiency is the explanation for the high speed up
and efficiency values that occur especially for the second
test case (Fig. 9 Fig. 10). Nevertheless the measured
performance results can serve for a direct comparison

of the 3 investigated parallelization methods.

Fig. 5 Fig. 7 show the results of the performance
evaluation tests for test case 1 and for parallelization
methods 1 3. In order to show the influence of the
numerical workload on the efficiency of the various par-
allelization schemes calculations were carried out for
two different, numbers of particle trajectories (5000 and
20000). But the comparison of these 2 series of calcu-
lations showed only minor differences for all 3 paral-
lelization methods. Therefore only the results for cal-
culations of 20000 particle trajectories are shown in this
paper.

Best, results were obtained by the parallelization
method 1 with a speed up of 47.1 on 64 processor
nodes. But as already mentioned above the method 1 is
basically the serial Lagrangian approach adopted to the
parallel machine and does not support the distributed
storage concept for the fluid flow data. Thus method 1
is not applicable to numerical grids with a finer grid res-
olution or to multiphase flows in geometrically complex
flow domains due to himited node memory on MIMD
computers. Method 2 and 3 show similar performance
results with a maximum speed up of about 18 and an
efficiency of about 0.3 for calculations on 64 processor

nodes.

450

=400 -

= . ————&——— Method 1

° U - U

CRETR N Method 2

= N e s Method 3

= \\

g 200 + N <>

() i \ﬂ !

5 100 e

= i A P > SR
0 S— T

No. of Processors

Figure b: Execution time for parallelization method 1 3
for the first test case.

Speed—up

No. of Processors

Figure 6: Speed up for parallelization method 1 3 for
the first test case.

Efficiency

1 2 4 8 16 32 64 128

No. of Processors

Figure 7: Efficiency for parallelization method 1 3 for
the first test case.

2800
"= 2500 &

[\~

=

=

jaw]
1

1500 4 \m
1000 4 KO

500 “g--_o

Execution Time [min
/
e

TE---He
0 T T T T T ?
1 2 4 8 16 32 64 128

No. of Processors

Figure 8: Execution time for parallelization method 1 3
for the second test case.

175
160 A

120 4

Speed—up
0
=
(o

]
- ge---Be--0O-

0'? = T T T
1 2 4 8 16 32 64 128

No. of Processors

Figure 9: Speed up for parallelization method 1 3 for
the second test case.

Efficiency

1 2 4 8 16 32 64 128

No. of Processors

Figure 10: Efficiency for parallelization method 1 3 for
the second test case.

The strong decrease in performance of all the meth-
ods 1 3 on 128 processor nodes does not result from
construction or implementation of the parallelization
methods but is mostly due to a known bottleneck for
node communication between the upper and the lower
64 processor partition of the Parsytec Power GC 128.
Less performance for calculations on 8 processor nodes
in comparison with calculations on 16 processor nodes
was found to be due to the arrangement of the grid
blocks of the numerical grid. For calculations on 16
processor nodes the grid blocks are arranged in 2 rows
per 8 grid blocks in the x direction. This leads to a dis-
tribution of the inlet cross section (x=0) to 2 different
processor nodes and therefore to an increase in program
performance.

Fig. 8 Fig. 10 show the results of the performance
evaluation tests for the second test case. Again the best
results could he achieved for method 1 (the serial Ta-
grangian approach adopted to the parallel machine).
As already mentioned above the large speed up values
and the efficiency values greater 1 result from a reduc-
tion of the numerical effort due to higher efficiency of
the particle localization algorithm on block structured
grids with a larger number of grid blocks.

Further the results for the method 2 show a substan-
tial deterioration in comparison to the other methods
and to the first test case due to worser load balancing
for separated multiphase flows.In this method the com-
putational power of a processor 1s assigned to a fixed
grid block of the numerical grid. So the execution time
of the program 1s mostly determined by the computa-
tional time spent by the processor which is assigned to
the grid block with the highest particle concentrations
inside the flow domain.

The results for method 3 show similar performance of
the parallelization method in comparison with method
1. Only for a larger number of processors (32 and more)
results show a decrease in efficiency (Fig. 10) due to the
larger amount of inter processor communication neces-
sary in the third parallelization method. Further the
results of the second test case for method 3 show, that
the method 1s applicable independent of the flow regime
of the investigated disperse multiphase flow even in the
case of flow separation or greater changes in particle

concentration in the flow domain.

7. CONCLUSIONS

The test cases for parallelization methods 1 3 show

performance results which are typical for CFD applica-

tions on massively parallel MTMD computers. Although
the parallel efficiency decreases for calculations on a
larger number of processor nodes, the results show the
applicability of the presented methods for TLagrangian
multiphase flow calculations on parallel computers with
distributed memory and a moderate number of high

performance processors. In this case remarkable speed

up can be achieved which makes calculation of complex
multiphase flows possible in reasonable time. Especially
the results for the third parallelization method show the
universal applicability of the method for parallel com-
putations of disperse multiphase flows. Because paral-
lelization of the Lagrangian approach is carried out by
parallelization in space using the domain decomposition
method the described algorithm is applicable to steady

and unsteady flow calculations as well.

8. Acknoledgement

The authors are indebted to Prof. M. Perié for
allowing the use of his CFD code FAN 2D in this
research. Further this work was supported by the
Deutsche Forschungsgemeinschaft (DFG) under Con-

tract No. Fr 1069/3 1.

References

[1] Crowe C.T., Sharma M.P., Stock D.E., 1977, “The
Particle Source Tn Cell (PST Cell) Model for Gas
Droplet Flows”, Trans. of ASMF, J. Fluids Fng.,
Vol. 99, pp. 325 332.

[2] Crowe C.T., 1982, “REVIEW Numerical
Models for dilute (Gas Particle Flows,” Trans. of
ASME, J. Flurds Fng., Vol. 104, pp. 297 303.

[3] Frank Th, 1992 “Numerische Simulation der
feststoffbeladenen Gasstromung im horizonta-
len Kanal unter Berucksichtigung von Wan-
drauhigkeiten”, PhD Thesis, Techn. University

Bergakademie Freiberg, Germany.

[4] Frank Th., Schulze T., 1994, “Ein numerisches
Verfahren zur Berechnung disperser Mehrphasen-
stromungen auf parallelen Hochleistungs-

Arbeitssitzung des GVC

Fachausschusses Mehrphasenstromungen, Febru-
ary 17 18, 1994, Wurzburg, Germany.

rechnern”, Proc.

[5] Frank Th., Schulze 1., 1994, “Numerical simulation

of gas droplet flow around a nozzle in a cylindrical

[12]

chamber using Lagrangian model based on a multi-
grid Navier Stokes solver”, International Sympo-
sium on Numerical Methods for Multiphase Flows,

June 19 23, 1994, Lake Tahoe (NV), USA.

Milojevié D, 1990, “Lagrangian Stochastic Deter-
ministic (LSD) Predictions of Particle Dispersion
in Turbulence,” Part. Part. Syst. Charact., Vol. 7,
pp- 181 190.

Patankar S.V., 1980, “Numerical Heat Transfer
and Fluid Flow”, McGraw Hill, New York.

Peri¢ M., 1989, “A Finite Volume Multigrid
Method for Calculating Turbulent Flows,” Proc.
7th Symposium on Turbulent Shear Flows, Vol. 1,
pp- 7.3.1. 7.3.6., Stanford University, USA.

Peri¢ M., 1992, “Ein zum Parallelrechnen geeigne-
tes Finite Volumen Mehrgitterverfahren zur Be-
rechnung komplexer Stromungen auf blockstruk-
turierten Gittern mit lokaler Verfeinerung”, Ab-
schluBbericht zum DFG Vorhaben Pe 350/3 1
im DFG Habilitandenstipendiumprogramm, Stan-
ford University, USA.

Schreck E., Perié¢ M., 1992, “Parallelization of im-
plicit solution methods”, ASMFE Fluids Fngineer-

mg Conference, June 22 23, 1992, Los Angeles
(CA), USA.

Peri¢ M., Lilek 7., 1993, “Users Manual for the
FAN 2D Software for the Calculation of Tncom-
pressible Flows”, Institut fur Schiffbau der Uni-

versitat Hamburg, Germany.

Schonung B., 1987, “Comparison of Different Dis-
persion Models for Particles in Lagrangian and
Fulerian Prediction Codes,” In : Proceedings of
the International Conference on Fluid Mechanics,
Peking, July 1.-4., 1987, Peking University Press,
China.

