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AbstractTwo parallel algorithms for the Lagrangian simulation ofdisperse multiphase ows are presented and compared.The �rst algorithm is based on the domain decomposi-tion method which is widely used for the parallel com-putation of uid ows. The numerical grid is devided inpartitions. All particle trajectories that cross a certainpartition are calculated by the same processor. In thesecond parallelization method there is no �xed relationbetween a processor and a grid partition. Each processorcan calculate trajectories in any part of the ow geometry.Therefore a complex memory management is established.The results of the test case calculations show that for thesecond method the load balancing is much better and thetotal computing time much lower than for the �rst.1 IntroductionRecently the Lagrangian simulation has become an e�-cient and widely used method for the calculation of var-ious kinds of 2- and 3-dimensional disperse multiphaseows (e.g. gas-particle ows, gas-droplet ows). Con-sidering the �eld of computational uid dynamics, theLagrangian simulation of coupled multiphase ows withstrong phase interaction ranks among the applicationswith the highest demand on computational power andsystem recources. Massively parallel computers providethe capability for cost-e�ective calculations of multiphaseows. In order to use the architecture of parallel comput-ers e�ciently, new solution algorithms have to be devel-oped. Di�culties arise from the complex data dependencebetween the uid ow calculation and the prediction ofparticle motion, and from the generally inhomogeneousdistribution of particle trajectories in the ow �eld.2 Physical and MathematicalFundamentals2.1 Basic Equations of Fluid MotionThe uid phase considered here is assumed to be Newto-nian and to have constant physical properties. The uid

ow is 2-dimensional, steady, incompressible, turbulentand isothermal. Fluid turbulence is modelled using thestandard k� " model and neglecting the inuence of par-ticle motion on uid turbulence. Under these assumptionsthe time-averaged equations describing the motion of theuid phase are given by the following form of the generaltransport equation:@@x (�F uF �) + @@y (�F vF�) =@@x �� @�@x � + @@y �� @�@y �+ S� + SP� (1)Here � is a general variable, � a di�usion coe�cient, S�a general source term and SP� symbolizes the source termdue to momentum exchange between the uid and theparticle phase. The variables uF and vF represent theuid velocity components, k is the turbulent kinetic en-ergy and " is the rate of dissipation of k.A detailed description of all terms and their correlationsis shown in Table 1. In this table �F is the uid densityand � is the laminar viscosity.2.2 Equations of Motion of the DispersePhaseThe disperse phase is treated by the application of the La-grangian approach, i.e. discrete particle trajectories arecalculated. Each calculated particle represents a largenumber of physical particles of the same physical proper-ties. The prediction of the particle trajectories is carriedout by solving the ordinary di�erential equations for theparticle location and velocities. Assuming that the ratioof uid density to particle density is small (�F=�P � 1)these equations read:d xPdt = uP ; d yPdt = vP (2)ddt � uPvP � = 34 � �F�P d2P ReP �CD(ReP ) � uF � uPvF � vP �+ CM(�) � vF � vPuP � uF ��+ �P � �F�P � gxgy � (3)1



� S� SP� �1 0 0 0uF @@x �� @uF@x �+ @@y �� @vF@x �� @p@x SPuF �effvF @@x �� @uF@y �+ @@y �� @vF@y �� @p@y SPvF �effk Pk � �F " 0 �t�k" "k (c"1 Pk � c"2 �F ") 0 �t�"Pk = �t�2 � ��@uF@x �2 + �@vF@y �2�+ �@uF@y + @vF@x �2��eff = �+ �t ; �t = �F c� k2"c� = 0:09 ; c"1 = 1:44 ; c"2 = 1:92�k = 1:0 ; �" = 1:3SPui : see Equation 4Table 1: Source terms and di�usion coe�cients for di�er-ent variables �with : ReP = dP vrel� ; � = 12 dP!relvrelvrel =q(uF � uP )2 + (vF � vP )2In these equations the subscript P indicates Particle andthe subscript F indicates Fluid. � is the uid kinematicviscosity, dP the paticle diameter and !rel the absolutevalue of the relative rotational velocity between uid andparticle. The �rst term on the right hand side of Equa-tion (3) represents the drag force exerted on the particleby the uid. The second term gives the lift force due toparticle rotation (Magnus force) and the third term thegravitational force. The values for the constant coe�-cients CD and CM can be found in [3]. The e�ect of uidturbulence on the motion of the disperse phase is mod-elled by the Lagrangian Stochastic-Deterministic (LSD)turbulence model proposed by Sch�onung [8] and Milo-jevi�c [5]. The particle's inuence on the uid phase ismodelled by the PSI-cell (Particle-Source-In-cell) method[1, 2]. Therefore an additional source term is introducedin the uid momentumequation as shown in Table 1. Thissource term is calculated as follows:SPui = � 1Vij XmP _NP huPi;out � uPi;in� gi(1� �F�P )(tout � tin)i (4)Here Vij is the volume of a cell of the numerical grid._NP is the number of physical particles per unit time rep-resented by the currently calculated trajectory, and mpis the mass of a single particle. The subscripts in and

out indicate the locations where the trajectory enters andleaves the grid cell, respectively.2.3 Solution AlgorithmFor the numerical solution of the equations described inthe above sections the physical space must be discretized.Therefore a boundary{�tted, non{orthogonal numericalgrid is used. The grid is block{structured and consistsof quadrangular cells. The equations of uid motion (1)are numerically solved on the basis of a �nite volume dis-cretization. A pressure correction technique of SIMPLEkind [6] is applied. The program package used to predictthe motion of the uid phase is based on developmentsby Peri�c and Lilek [7]. When a converged solution for theuid ow �eld has been calculated, the prediction of theparticle motion is carried out. Therefore Equation (3) issolved by using a standard Runge-Kutta scheme of 4thorder accuracy. The source terms according to Equation(4) are predicted simultaneously during trajectory calcu-lation. After all particle trajectories are calculated thesource terms are included in the uid momentum equa-tions and a new converged solution for the uid ow �eldis computed.The iterative algorithm for the numerical simulation ofthe coupled two{phase ow is summarized as follows:1. calculation of a converged solution for the uid ow�eld without taking the source terms of the dispersephase into account2. tracing a large number of particles through the ow�eld and computing the source terms simultaneously3. recalculation of the uid ow �eld considering thesource terms of the disperse phase4. repeating Steps 2 and 3 until the solution of the cou-pled equations has converged.3 Parallelization3.1 The Parallel Algorithm for FluidFlow CalculationThe use of parallel computers generally has two advan-tages. The �rst is a reduction of the total amount oftime needed for solving a special problem, e.g. comput-ing a ow �eld. The second is the ability to solve "larger"problems. Considering the case of a ow �eld calculationthis means that �ner numerical grids, i.e. containing moreand smaller grid cells, can be used and thus the accuracyof the solution can be improved. Both advantages arereached by dividing the original problem in a number ofsmaller problems that are solved separately and simulta-neously by the processors of a parallel computer. Hencethe solution algorithm has to be adapted to the architec-ture of the computer in order to use its computationalpower e�ciently.In the case of the ow �eld calculation the division ofthe original problem in smaller problems is carried outby partitioning the numerical grid. The so called domain2
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Figure 1: Principle of grid partitioningdecomposition method is illustrated in Figure 1. By ap-plying this method the ow domain, which is representedby the numerical grid, is divided in smaller parts. Theow on each part of the ow domain, i.e. the numeri-cal grid, is calculated by a single processor of the parallelcomputer. The solution algorithm requires that the re-sulting partitions overlap as shown in Figure 1. As aconsequence the total number of grid cells and hence thetotal computational e�ort is increased. This fact reducesthe e�ciency of the parallel algorithm. The ow �elddata in the interior part of a partition and at the physicalboundaries can be calculated independently. At a paral-lel boundary, i.e. a boundary between adjacent parts ofthe grid, an indepedent calculation is not possible. Thereis the need to exchange data between the neighbouringpartitions. Therefore a kind of communication betweenthe processors of the parallel computer must be estab-lished. In general the time needed for communication issigni�cant and increases the total time needed for solvinga special problem. Thus inter-processor communicationis another factor that reduces the e�ciency of the par-allel solution algorithm. When a numerical grid is par-titioned, the resulting parts of the grid should be sizedalmost equally. This implicates that the computationalload is balanced well among the processors. Otherwisethere may arise waiting times because computation andcommunication are not synchronized.
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Node 2Figure 2: Scheme of processes for the Domain Decompo-sition Method3.2 Parallel Algorithms for Particle Tra-jectory CalculationThe prediction of the motion of the disperse phase is car-ried out by the application of the Lagrangian approachas described in Section 2.2. Considering the paralleliza-tion of this algorithm there are two important features.The �rst is that in general particle trajectories are notuniformly distributed in the ow domain even if there isa uniform distribution at the inow cross-section. Thisis caused by the high density ratio �P=�F by what parti-cle motion is determined rather by inertia than by uidforces. As a second characteristic the location and distri-bution of particle trajectories is not known at the begin-ning of the computation. Considering these features thefollowing parallelization methods have been developed [4]:Method 1: Domain Decomposition (DD) -MethodAs indicated by its name this method is based on the do-main decomposition used for calculating the ow �eld. Anexplicit host-node scheme is established as illustrated inFigure 2. The trajectory calculation is done by the nodeprocesses whereas the host process carries out only man-agement tasks. The node processes are identical to thosethat do the ow �eld calculation. The grid and uid dataof a single grid partition are stored in the local memoryof each node process.The principle of this method is that in a node processonly those trajectory parts are calculated that cross thegrid part assigned to this process. In other words, all tra-jectory parts crossing a certain partition are calculated bythe process related to this partition. The particle state(location, velocity, diameter, ...) at the entry point to thecurrent partition is sent by the host to the node process.The entry point can either be an inow cross section ora boundary to a neighbouring partition. After the tra-jectory part computation is �nished, the particle state atthe exit point (outlet cross section or partition boundary)is sent back to the host. If the exit point is located atthe interface of two grid parts, the host sends the particlestate to the process related to the neighbouring part forcontinuing trajectory computation.An advantage of this kind of communication scheme isthat direct inter-node communication is avoided. If theparticle data were exchanged directly between the nodes,large waiting times would arise because the times needed3



for predicting di�erent trajectory parts in general di�ersigni�cantly. By involving a host process as a distribu-tor or collector, respectively, of particle states the nodeshardly ever have to wait for the arrivel of data, espe-cially when host-node communication is performed asyn-chronously.As pointed out above in general two-phase ows the tra-jectories of the disperse phase are inhomogeneously dis-tributed in the ow �eld. This can cause a pour load bal-ancing when applying the DD method. In regions wheremany trajectories are located the computational e�ort ishigher than in other regions. Hence the computationalload on some processes is high and on other processes itis low due to the �xed relation between grid partitions andprocesses. Futhermore, even if the particle trajectories aredistributed uniformly in physical space the computationalload can be distributed non-uniformly during computingtime. This case occurs e.g. if a simple pipe or channelow is considered where the grid partitions are arrangedin a row along the pipe or channel axis. At the beginningof computation the computational load near the inowcross section is high and near the outow cross section itis low. Towards the end of computation the situation isvice versa.Method 2: Distributed Shared Memory (DSM) -MethodThis method has been developed to overcome the disad-vantages of the DD method concerning the balancing ofthe computational load. In the DSM method there ex-ist three classes of processes (Figure 3). Just as in theDD method the host process distributes the particle ini-tial conditions among the calculating nodes and collectsthe particle's state when the trajectory segment calcula-tion has been �nished. The calculating nodes receive theparticle initial condition from the host and predict the tra-jectory segment on a certain grid partition. In contrast tothe DD method there is no �xed relation between a nodeand a grid partition. Hence it is possible to compute dif-ferent trajectories on one grid partition at the same timeby di�erent node processes. When a particle initial stateis received by a node there are two situations that may oc-cur. The �rst is that the particle is located on the part ofthe numerical grid that is already present at the node. Inthe second situation this grid part is currently not present.If the latter one occurs the partition must be loaded froma memorymanager process. Each memorymanager storespermanently the grid geometry and uid data for a singlegrid part. Thus a exible assignment of grid partitions tocalculating nodes is made possible according to the actualrequirements of trajectory calculation.The tasks of the di�erent process classes are summa-rized as follows:Host:1. send particle initial conditions to nodes2. if a node has �nished a trajectory segment calcula-tion, receive back the particle state3. treat particle state as new initial condition and sendit to a node for further calculation
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fluid data block 2Figure 3: Scheme of processes for the Distributed SharedMemory Method4. repeat Steps 1-3 until all trajectories have reachedthe outlet cross sectionNode:1. receive particle initial condition from host2. check if particle is located in the grid part currentlyloaded; if not, load new grid part from the memorymanager where it is stored3. calculate trajectory part4. send particle state at the exit point (e.g. partitionboundary or outlet cross section) back to host5. repeat Steps 1-4 as long as the host sends initial con-ditionsMemory Manager:1. store grid and uid data for a certain grid block per-manently2. if a node requires data of the stored partition, senddata to nodeThere are some further details of the DSM method thatshould be pointed out. For predicting a trajectory seg-ment a node needs the complete geometry data of theactual grid part but only the uid data for the grid cell inwhich the particle is currently located. Hence there aretwo thinkable algorithms concerning the treatment of theuid data. The �rst is loading the complete uid datafor the whole partition from the memory manager at thebeginning of computation. This algorithm implies a sin-gle communication while transferring a large amount ofdata. The second possibility is to load the uid data onlyfor the single grid cell the particle is currently located inand to reload the uid data every time the particle entersa new cell. The second algorithm implies a large num-ber of communications transferring a low amount of data.Which algorithm is the more e�cient one depends on theavailable memory space and the velocity of communica-tion und thus is highly machine dependent. Furthermore,4



Figure 4: Particle trajectories in a heat exchanger geom-etryother algorithms are thinkable in between, e.g. transfer-ring data of a small environment around the current celland/or caching of data that have already been transferredbefore.As described above the DSM method involves threeclasses of processes: the host, the calculating nodes andthe memory manager tasks. The node processes are char-acterized by needing little memory space but doing a largenumber of computations. On the other hand the mem-ory manager processes need much space but do not carryout any computation. Hence, if the parallel computer al-lows running more than one process on a single CPU, anode and a memory manager process can be executed onthe same processor without restricting each other signi�-cantly.4 Results and Discussion4.1 Description of the Test CaseFor the test case calculations a vertical two-phase ow in aheat exchanger geometry has been simulated. The ow is2-dimensional, steady, incompressible and turbulent. Theuid phase is chosen as air with standard aerodynami-cal properties. The disperse phase consists of solid siliconparticles with a density of �P � 2500kg=m3 and a mediumparticle diameter of dP = 260�m. In Figure 4 some par-
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Figure 5: Total computing time (calculation time + com-munication time) needed for calculating 5000 trajectoriesticle trajectories are shown. The inlet cross section foruid and particles is located at the upper border of the�gure, the outlet cross section at the lower border. Theright and left boundaries of the geometry are symmetryboundaries.It can be easily seen that due to the particle-wall in-teraction the particles stay much longer in the middle ofthe geometry than near the inlet or outlet cross sections.Obviously this behaviour causes an inhomogeneous distri-bution of the computational e�ort.All test case calculations have been carried out on aCray T3D using the message passing interface MPI.4.2 Comparison of the ParallelizationMethodsFor each of the algorithms described in Section 3.2 testcase calculations have been done using di�erent numbersof processors. In Figure 5 the total computing times,i.e. calculation time plus communication time, are given.For both algorithms the computing time decreases sub-stantially with an increasing number of processors. TheDSM method is found to achieve computing times thatare nearly 50 % lower than those for the DD method.The Figures 6 - 9 show the results obtained from cal-culations involving 16 node processors. The results forother numbers of processors are qualitatively similar.Figure 6 shows the time that each of the 16 processorsspends on trajectory calculation. This is the time onlyneeded for computing purposes, i.e. not including anycommunication or waiting times. The processors with lowprocessor numbers are related to grid partitions near theinlet cross section. The part of the grid near the out-let cross section is assigned to the processors having highprocessor numbers. Comparing Figure 6 with Figure 4 itis obvious, that the computational load on a certain pro-cessor directly depends on the number and lenght of tra-jectories that cross the grid part related to the processor.Since the assignment of the grid part to the processor is5



�xed throughout the calculation, the computational loadis not balanced well.
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Figure 6: Calculation time (without communication time)needed for calculating 1000 trajectories on 16 node pro-cessors using the Domain Decomposition MethodIn Figure 7 the communication time for the same caseis shown. The communication time includes the time fordata exchange and the waiting time. Since in the DDmethod only few data have to be exchanged, the commu-nication time mainly consists of waiting time, i.e. timeduring which a node processor waits for receiving a par-ticle initial condition from the host. The largest waitingtimes are observed for the processors with the lowest com-putational load and vice versa.
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Figure 7: Communication time (including waiting time)needed for calculating 1000 trajectories on 16 node pro-cessors using the Domain Decomposition MethodThe Figures 8 and 9 show the results obtained by ap-plying the DSM method. These results di�er widely fromthose obtained for the DD method. In the DSM methodthere is no �xed relation between a node processor anda certain grid partition. A node can calculate a trajec-

tory segment on every partition depending on the particleinitial condition received from the host. The calculationtime (not including communication and waiting time) foreach node processor is given in Figure 8. It can be seenthat the computational load is balanced very well amongthe processors. Furthermore, the maximum calculationtime is much lower than the maximum time observed forthe DD method.The communication time (including waiting time) mea-sured for the DSM method is presented in Figure 9. Justas the calculation time the communication time is nearlythe same for all processors. In comparison to the DDmethod the communication time is much lower, althoughthe amount of data to be exchanged is higher. This is dueto the fact that in the DSM method there arises hardlyany waiting time. When a processor has �nished a trajec-tory segment calculation, immediately a new initial con-dition is send by the host. Thus the communication timemeasured for the DSM method mainly consists of timefor data exchange, whereas in the DD method it mainlyconsists of waiting time.
0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
al

cu
la

tio
n 

T
im

e 
[s

]

Processor Number

Distributed Shared Memory Method (16 processors)

Figure 8: Calculation time (without communication time)needed for calculating 1000 trajectories on 16 node pro-cessors using the Distributed Shared Memory Method5 ConclusionTwo parallelization methods for the Lagrangian simu-lation of disperse multiphase ows are presented. TheDomain Decomposition (DD) Method is based on themethod having the same name widely used for the parallelsimulation of uid ows. There is a �xed assignment ofgrid partitions to processors. In the Distributed SharedMemory (DSM) method a complex memory managementis established by which every processor is able to calculateparticle trajectories in any part of the numerical grid.Both parallel algorithms provide the capability to re-duce computing time substantially. The test case calcula-tions presented here show that for the DSM method theload balancing is much better and the total computingtime is much lower than for the DD method.6
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