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Abstract

Two parallel algorithms for the Lagrangian simulation of
disperse multiphase flows are presented and compared.
The first algorithm is based on the domain decomposi-
tion method which is widely used for the parallel com-
putation of fluid flows. The numerical grid is devided in
partitions. All particle trajectories that cross a certain
partition are calculated by the same processor. In the
second parallelization method there is no fixed relation
between a processor and a grid partition. Each processor
can calculate trajectories in any part of the flow geometry.
Therefore a complex memory management, is established.
The results of the test case calculations show that for the
second method the load balancing is much better and the
total computing time much lower than for the first.

1 Introduction

Recently the Lagrangian simulation has become an effi-
cient, and widely used method for the calculation of var-
ious kinds of 2- and 3-dimensional disperse multiphase
flows (e.g. gas-particle flows, gas-droplet flows). Con-
sidering the field of computational fluid dynamics, the
Lagrangian simulation of coupled multiphase flows with
strong phase interaction ranks among the applications
with the highest demand on computational power and
system recources. Massively parallel computers provide
the capability for cost-effective calculations of multiphase
flows. Tn order to use the architecture of parallel comput-
ers efficiently, new solution algorithms have to be devel-
oped. Difficulties arise from the complex data dependence
between the fluid flow calculation and the prediction of
particle motion, and from the generally inhomogeneous
distribution of particle trajectories in the flow field.

2 Physical and Mathematical

Fundamentals
2.1 Basic Equations of Fluid Motion

The fluid phase considered here 1s assumed to be Newto-
nian and to have constant physical properties. The fluid

flow 1s 2-dimensional, steady, incompressible, turbulent
and isothermal. Fluid turbulence is modelled using the
standard k& — ¢ model and neglecting the influence of par-
ticle motion on fluid turbulence. Under these assumptions
the time-averaged equations describing the motion of the
fluid phase are given by the following form of the general
transport equation:
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Here @ is a general variable, T' a diffusion coefficient, S
a general source term and SE symbolizes the source term
due to momentum exchange between the fluid and the
particle phase. The variables ugp and vp represent the
fluid velocity components, k is the turbulent kinetic en-
ergy and ¢ is the rate of dissipation of k.

A detailed description of all terms and their correlations
is shown 1n Table 1. Tn this table pr is the fluid density
and p 1s the laminar viscosity.

2.2 Equations of Motion of the Disperse
Phase

The disperse phase is treated by the application of the La-
grangian approach, i.e. discrete particle trajectories are
calculated. Fach calculated particle represents a large
number of physical particles of the same physical proper-
ties. The prediction of the particle trajectories 1s carried
out by solving the ordinary differential equations for the
particle location and velocities. Assuming that the ratio
of fluid density to particle density is small (pr/pr < 1)

these equations read:
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Table 1: Source terms and diffusion coefficients for differ-
ent variables ®
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In these equations the subscript P indicates Particle and
the subscript F' indicates Fluid. v is the fluid kinematic
viscosity, dp the paticle diameter and w,., the absolute
value of the relative rotational velocity between fluid and
particle. The first term on the right hand side of Equa-
tion (3) represents the drag force exerted on the particle
by the fluid. The second term gives the lift force due to
particle rotation (Magnus force) and the third term the
gravitational force. The values for the constant coeffi-
cients C'p and Cyy can be found in [3]. The effect of fluid
turbulence on the motion of the disperse phase is mod-
elled by the Lagrangian Stochastic-Deterministic (T.SD)
turbulence model proposed by Schonung [8] and Milo-
jevié [6]. The particle’s influence on the fluid phase is
modelled by the PST-cell (Particle-Source-Tn-cell) method
[1, 2]. Therefore an additional source term is introduced
in the fluid momentum equation as shown in Table 1. This
source term 1s calculated as follows:
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Here Vi; is the volume of a cell of the numerical grid.
Np is the number of physical particles per unit time rep-
resented by the currently calculated trajectory, and m,
is the mass of a single particle. The subscripts in and

out indicate the locations where the trajectory enters and
leaves the grid cell, respectively.

2.3 Solution Algorithm

For the numerical solution of the equations described in
the above sections the physical space must be discretized.
Therefore a boundary fitted, non orthogonal numerical
grid is used. The grid 1s block structured and consists
of quadrangular cells. The equations of fluid motion (1)
are numerically solved on the basis of a finite volume dis-
cretization. A pressure correction technique of SIMPLE
kind [6] is applied. The program package used to predict
the motion of the fluid phase is based on developments
by Peri¢ and Lilek [7]. When a converged solution for the
fluid flow field has been calculated, the prediction of the
particle motion is carried out. Therefore Equation (3) is
solved by using a standard Runge-Kutta scheme of 4th
order accuracy. The source terms according to Equation
(4) are predicted simultaneously during trajectory calcu-
lation. After all particle trajectories are calculated the
source terms are included in the fluid momentum equa-
tions and a new converged solution for the fluid flow field
is computed.

The iterative algorithm for the numerical simulation of
the coupled two phase flow is summarized as follows:

1. calculation of a converged solution for the fluid flow
field without taking the source terms of the disperse
phase into account

2. tracing a large number of particles through the flow
field and computing the source terms simultaneously

3. recalculation of the fluid flow field considering the
source terms of the disperse phase

4. repeating Steps 2 and 3 until the solution of the cou-
pled equations has converged.

3 Parallelization

3.1 The Parallel Algorithm for Fluid
Flow Calculation

The use of parallel computers generally has two advan-
tages. The first is a reduction of the total amount of
time needed for solving a special problem, e.g. comput-
ing a flow field. The second is the ability to solve "larger”
problems. Considering the case of a flow field calculation
this means that finer numerical grids, i.e. containing more
and smaller grid cells, can be used and thus the accuracy
of the solution can be improved. Both advantages are
reached by dividing the original problem in a number of
smaller problems that are solved separately and simulta-
neously by the processors of a parallel computer. Hence
the solution algorithm has to be adapted to the architec-
ture of the computer in order to use 1ts computational
power efficiently.

In the case of the flow field calculation the division of
the original problem in smaller problems is carried out
by partitioning the numerical grid. The so called domain
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Figure 1: Principle of grid partitioning

decomposition method is illustrated in Figure 1. By ap-
plying this method the flow domain, which is represented
by the numerical grid, is divided in smaller parts. The
flow on each part of the flow domain, i.e. the numer-
cal grid, is calculated by a single processor of the parallel
computer. The solution algorithm requires that the re-

As a

consequence the total number of grid cells and hence the

sulting partitions overlap as shown in Figure 1.

total computational effort is increased. This fact reduces
the efficiency of the parallel algorithm. The flow field
data in the interior part of a partition and at the physical
boundaries can be calculated independently. At a paral-
lel boundary, i.e. a boundary between adjacent parts of
the grid, an indepedent calculation is not possible. There
is the need to exchange data between the neighbouring
partitions. Therefore a kind of communication between
the processors of the parallel computer must be estab-
lished. Tn general the time needed for communication is
significant and increases the total time needed for solving
a special problem. Thus inter-processor communication
is another factor that reduces the efficiency of the par-
allel solution algorithm. When a numerical grid is par-
titioned, the resulting parts of the grid should be sized
almost equally. This implicates that the computational
load 1s balanced well among the processors. Otherwise
there may arise waiting times because computation and
communication are not synchronized.

grid block 1
fluid data block 1 fluid data block 2

(Nodel)  (Node2)

Host

grid block 2

Figure 2: Scheme of processes for the Domain Decompo-
sition Method

3.2 Parallel Algorithms for Particle Tra-
jectory Calculation

The prediction of the motion of the disperse phase is car-
ried out by the application of the Lagrangian approach
as described in Section 2.2. Considering the paralleliza-
tion of this algorithm there are two important features.
The first is that in general particle trajectories are not
uniformly distributed in the flow domain even if there is
This
is caused by the high density ratio pr/pr by what parti-
cle motion 1s determined rather by inertia than by fluid

a uniform distribution at the inflow cross-section.

forces. As a second characteristic the location and distri-
bution of particle trajectories 1s not known at the begin-
ning of the computation. Considering these features the
following parallelization methods have been developed [4]:

Method 1: Domain Decomposition (DD) -
Method

As indicated by its name this method is based on the do-
main decomposition used for calculating the flow field. An
explicit host-node scheme is established as illustrated in
Figure 2. The trajectory calculation is done by the node
processes whereas the host process carries out only man-
agement tasks. The node processes are identical to those
that do the flow field calculation. The grid and fluid data
of a single grid partition are stored in the local memory
of each node process.

The principle of this method 1s that in a node process
only those trajectory parts are calculated that cross the
grid part assigned to this process. In other words, all tra-
jectory parts crossing a certain partition are calculated by
the process related to this partition. The particle state
(location, velocity, diameter, ...) at the entry point to the
current, partition is sent by the host to the node process.
The entry point can either be an inflow cross section or
After the tra-
jectory part computation is finished, the particle state at

a boundary to a neighbouring partition.

the exit point (outlet cross section or partition boundary)
is sent, back to the host. Tf the exit point is located at
the interface of two grid parts, the host sends the particle
state to the process related to the neighbouring part for
continuing trajectory computation.

An advantage of this kind of communication scheme is
that direct inter-node communication is avoided. If the
particle data were exchanged directly between the nodes,
large waiting times would arise because the times needed



for predicting different trajectory parts in general differ
significantly. By involving a host process as a distribu-
tor or collector, respectively, of particle states the nodes
hardly ever have to wait for the arrivel of data, espe-
cially when host-node communication is performed asyn-
chronously.

As pointed out above in general two-phase flows the tra-
jectories of the disperse phase are inhomogeneously dis-
tributed in the flow field. This can cause a pour load bal-
ancing when applying the DD method. Tn regions where
many trajectories are located the computational effort is
higher than in other regions. Hence the computational
load on some processes is high and on other processes it
is low due to the fixed relation between grid partitions and
processes. Futhermore, even if the particle trajectories are
distributed uniformly in physical space the computational
load can be distributed non-uniformly during computing
time. This case occurs e.g. if a simple pipe or channel
flow 1s considered where the grid partitions are arranged
in a row along the pipe or channel axis. Af the beginning
of computation the computational load near the inflow
cross section is high and near the outflow cross section it
is low. Towards the end of computation the situation is
vice versa.

Method 2: Distributed Shared Memory (DSM) -
Method

This method has been developed to overcome the disad-
vantages of the DD method concerning the balancing of
the computational load. Tn the DSM method there ex-
ist three classes of processes (Figure 3). Just as in the
DD method the host process distributes the particle ini-
tial conditions among the calculating nodes and collects
the particle’s state when the trajectory segment calcula-
tion has been finished. The calculating nodes receive the
particle initial condition from the host and predict the tra-
jectory segment on a certain grid partition. In contrast to
the DD method there is no fixed relation between a node
and a grid partition. Hence 1t is possible to compute dif-
ferent trajectories on one grid partition at the same time
by different node processes. When a particle initial state
is received by a node there are two situations that may oc-
cur. The first 1s that the particle is located on the part of
the numerical grid that is already present at the node. In
the second situation this grid part is currently not present.
If the latter one occurs the partition must be loaded from
a memory manager process. Fach memory manager stores
permanently the grid geometry and fluid data for a single
grid part. Thus a flexible assignment of grid partitions to
calculating nodes 1s made possible according to the actual
requirements of trajectory calculation.

The tasks of the different process classes are summa-
rized as follows:

1. send particle initial conditions to nodes

2. if a node has finished a trajectory segment calcula-
tion, receive back the particle state

3. treat particle state as new initial condition and send
it to a node for further calculation

current grid block
fluid data cache

(Node 1)

current grid block
fluid data cache

(Node2)

Host ..
Memory Memory
Manager 1 Manager 2

grid block 1
fluid data block 1

grid block 2
fluid data block 2

Figure 3: Scheme of processes for the Distributed Shared
Memory Method

4. repeat Steps 1-3 until all trajectories have reached
the outlet cross section

Node:
1. receive particle initial condition from host

2. check if particle is located in the grid part currently
loaded; if not, load new grid part from the memory
manager where it is stored

3. calculate trajectory part

4. send particle state at the exit point (e.g. partition
boundary or outlet, cross section) back to host

5. repeat Steps 1-4 as long as the host sends initial con-
ditions

Memory Manager:

1. store grid and fluid data for a certain grid block per-
manently

2. if a node requires data of the stored partition, send
data to node

There are some further details of the DSM method that
should be pointed out. For predicting a trajectory seg-
ment a node needs the complete geometry data of the
actual grid part but only the fluid data for the grid cell in
which the particle is currently located. Hence there are
two thinkable algorithms concerning the treatment of the
fllid data. The first is loading the complete fluid data
for the whole partition from the memory manager at the
beginning of computation. This algorithm implies a sin-
gle communication while transferring a large amount of
data. The second possibility is to load the fluid data only
for the single grid cell the particle is currently located in
and to reload the fluid data every time the particle enters
a new cell. The second algorithm implies a large num-
ber of communications transferring a low amount of data.
Which algorithm is the more efficient one depends on the
available memory space and the velocity of communica-
tion und thus is highly machine dependent. Furthermore,



Figure 4: Particle trajectories in a heat exchanger geom-
etry

other algorithms are thinkable in between, e.g. transfer-
ring data of a small environment around the current cell
and/or caching of data that have already been transferred
before.

As described above the DSM method involves three
classes of processes: the host, the calculating nodes and
the memory manager tasks. The node processes are char-
acterized by needing little memory space but doing a large
number of computations. On the other hand the mem-
ory manager processes need much space but do not carry
out any computation. Hence, if the parallel computer al-
lows running more than one process on a single CPU, a
node and a memory manager process can be executed on
the same processor without restricting each other signifi-
cantly.

4 Results and Discussion

4.1 Description of the Test Case

For the test case calculations a vertical two-phase flow in a
heat exchanger geometry has been simulated. The flow is
2-dimensional, steady, incompressible and turbulent. The
fluid phase 1s chosen as air with standard aerodynami-
cal properties. The disperse phase consists of solid silicon
particles with a density of pr &~ 2500kg/m? and a medium
particle diameter of dp = 260um. Tn Figure 4 some par-
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Figure 5: Total computing time (calculation time + com-
munication time) needed for calculating 5000 trajectories

ticle trajectories are shown. The inlet cross section for
fluid and particles is located at the upper border of the
figure, the outlet cross section at the lower border. The
right and left boundaries of the geometry are symmetry
boundaries.

Tt can be easily seen that due to the particle-wall in-
teraction the particles stay much longer in the middle of
the geometry than near the inlet or outlet cross sections.
Obviously this behaviour causes an inhomogeneous distri-
bution of the computational effort.

All test case calculations have been carried out on a
Cray T3D using the message passing interface MPI.

4.2 Comparison of the Parallelization

Methods

For each of the algorithms described in Section 3.2 test
case calculations have been done using different numbers
of processors. In Figure 5 the total computing times,
i.e. calculation time plus communication time, are given.
For both algorithms the computing time decreases sub-
stantially with an increasing number of processors. The
DSM method is found to achieve computing times that
are nearly 50 % lower than those for the DD method.
The Figures 6 - 9 show the results obtained from cal-
The results for
other numbers of processors are qualitatively similar.
Figure 6 shows the time that each of the 16 processors

culations involving 16 node processors.

spends on trajectory calculation. This is the time only
needed for computing purposes, i.e. not including any
communication or waiting times. The processors with low
processor numbers are related to grid partitions near the
The part of the grid near the out-

let, cross section is assigned to the processors having high

inlet cross section.

processor numbers. Comparing Figure 6 with Figure 4 it
is obvious, that the computational load on a certain pro-
cessor directly depends on the number and lenght of tra-
jectories that cross the grid part related to the processor.
Since the assignment of the grid part to the processor is



fixed throughout the calculation, the computational load
is not balanced well.
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Figure 6: Calculation time (without communication time)
needed for calculating 1000 trajectories on 16 node pro-
cessors using the Domain Decomposition Method

In Figure 7 the communication time for the same case
is shown. The communication time includes the time for
data exchange and the waiting time. Since in the DD
method only few data have to be exchanged, the commu-
nication time mainly consists of waiting time, i.e. time
during which a node processor waits for receiving a par-
ticle mitial condition from the host. The largest waiting
times are observed for the processors with the lowest com-
putational load and vice versa.
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Figure 7: Communication time (including waiting time)
needed for calculating 1000 trajectories on 16 node pro-
cessors using the Domain Decomposition Method

The Figures 8 and 9 show the results obtained by ap-
plying the DSM method. These results differ widely from
those obtained for the DD method. Tn the DSM method
there is no fixed relation between a node processor and
a certain grid partition. A node can calculate a trajec-

tory segment on every partition depending on the particle
initial condition received from the host. The calculation
time (not including communication and waiting time) for
each node processor is given in Figure 8. Tt can be seen
that the computational load is balanced very well among
the processors. Furthermore, the maximum calculation
time is much lower than the maximum time observed for
the DD method.

The communication time (including waiting time) mea-
sured for the DSM method is presented in Figure 9. Just
as the calculation time the communication time is nearly
the same for all processors. In comparison to the DD
method the communication time is much lower, although
the amount of data to be exchanged is higher. This is due
to the fact that in the DSM method there arises hardly
any waiting time. When a processor has finished a trajec-
tory segment calculation, immediately a new initial con-
dition is send by the host. Thus the communication time
measured for the DSM method mainly consists of time
for data exchange, whereas in the DD method 1t mainly
consists of waiting time.
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Figure 8: Calculation time (without communication time)
needed for calculating 1000 trajectories on 16 node pro-
cessors using the Distributed Shared Memory Method

5 Conclusion

Two parallelization methods for the Lagrangian simu-
lation of disperse multiphase flows are presented. The
Domain Decomposition (NDD) Method is based on the
method having the same name widely used for the parallel
simulation of fluid flows. There is a fixed assignment of
grid partitions to processors. In the Distributed Shared
Memory (DSM) method a complex memory management,
is established by which every processor is able to calculate
particle trajectories in any part of the numerical grid.

Both parallel algorithms provide the capability to re-
duce computing time substantially. The test case calcula-
tions presented here show that for the DSM method the
load balancing 18 much better and the total computing
time is much lower than for the DD method.
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needed for calculating 1000 trajectories on 16 node pro-
cessors using the Distributed Shared Memory Method
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