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ABSTRACT

This paper deals with two different methods for the
parallelization of Lagrangian (PST cell) approach which is
widely used for the prediction of disperse multiphase flows
(e.g. gas particle or gas droplet flows). Tn both presented
methods the parallelization of the solution algorithm for the
fluids equations of motion is carried out by application of a
domain decomposition method to the block structured grid.
For the Lagrangian solution algorithm for the equations of
motion of the disperse phase two different parallelization
methods are investigated and compared with each other.
Results of performance evaluation are provided for a typ-
ical test case for PVM and MPT implementations of the
algorithms and for the two different MIMD computer ar-
chitectures Parsytec GC 128 and Cray T3D as well.

NOMENCLATURE

Cp,Cur drag and lift coefficients

Re Reynolds number

So source term

Sg source term due to particle fluid
interaction

Vv volume

g gravitational acceleration

k turbulence kinetic energy

m particle mass

t time

u, v velocity in x and y direction

VUpel absolute value of particle fluid
relative velocity

r general diffusion coefficient

P general variable in transport
equation

€ dissipation of turbulent

kinetic energy

v kinemaptic viscosity

p density

w particle rotational velocity
Subscripts

F fluid phase

P particle phase

1. THE EULERTIAN/LAGRANGIAN MODEL
FOR DISPERSE MULTIPHASE FLOWS

All parallelization methods described in this paper are
based on the Eulerian/Tagrangian approach (PST cell) de-
veloped by C.T. Crowe [1, 2]. The model has been described
in more detail in earlier publications of the authors [3, 4, 5].
For the flow calculation of the continuous phase a modified
finite volume Navier Stokes solver developed by M. Perié
and 7. Tilek [9] is used. For the case of a steady, incom-
pressible and isothermal two phase flow the time averaged
form of the governing fluid phase equations can be cast into
the following form of the general transport equation :
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where & stands for the different variables up, vp, k and
€. The terms Sg and T represent the source term and the
effective diffusion coefficient, respectively, and SE repre-
sents the source term due to the momentum exchange be-
tween phases. This last term is calculated by solving the
Lagrangian equation of particle motion using the PST cell

method [1].
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The Navier Stokes solver is operating on structured, non
orthogonal, curvilinear grids with a bisectional refinement



strategy for the construction of the various grid levels.

The disperse phase is treated by the Lagrangian ap-
proach where a large number of particles are followed in
time along their trajectories through the flow domain. The
particle trajectories are determined by solving the ordinary
differential equations for the particle location, the transla-
tional and rotational velocities. For the formulation of the
particles equations of motion only the drag force, the lift
force due to particle rotation (Magnus force) and the grav-
itational force are taken into account. Tt is assumed that
other forces like the Basset history force can be neglected
due to a small density ratio pr/pp.
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The effect of turbulence of the fluid flow on the motion of
the disperse phase is modelled by the so called Lagrangian
stochastic deterministic (LSD) turbulence model proposed
by Schonung and Milojevic [6]. The standard iteration pro-
cedure is applied to the coupled system of equations of fluid

and particle motion as described in [5]. The iterative solu-
tion procedure is continued until convergence for the fluid
and particle flow field is achieved.

2. THE PARALLELIZATION METHODS

2.1. Parallelization Of The Navier Stokes Solver
The parallelization of the solution algorithm for the set

of continuity, Navier Stokes and turbulence model equa-
tions is carried out by parallelization in space, that means
by application of the domain decomposition or grid parti-
tioning method. Using the block structure of the numerical
grid the flow domain is partitioned in a number of sub-
domains according to the number of computing nodes of
the parallel machine (Fig. 1). The resulting subdomains
with their geometrical and fluid flow data are assigned to
the individual processor nodes for calculation. Fluid flow
characteristics along the grid block boundaries which are
common to two different nodes have to be exchanged dur-
ing the solution process by inter processor communication.
This parallelization method was proposed e.g. by Perié [7]
and Schreck [8] and ranks among the established and thor-
ough investigated methods in the field of high performance
computing. Grid partitioning methods were investigated in
the past by many authors and so this parallelization algo-
rithm was applied without significant changes.
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Fig. 1: Domain decomposition for the numerical grid.

Domain Decomposition Approach For The

Lagrangian Solver

Parallel solution algorithms for the particle equations
of motion have to deal with the global data dependence
between the distributed storage of fluid flow data and the
local data requirements for particle trajectory calculation.
A parallel Lagrangian solution algorithm has either to pro-
vide all fluid flow data necessary for the calculation of a
certain particle trajectory segment in the local memory of
the processor node or the fllid flow data have to be deliv-
ered from other processor nodes at the moment when they
are required.

One approach in parallelization of Lagrangian particle
trajectory calculations is the application of the same par-
allelization method as for the fluid flow calculation to the
Lagrangian solver as well, that means domain decompo-
sition. In this approach geometry and fluid flow data are
distributed over the processor nodes of the parallel machine
in accordance to the block structure of the numerical grid.
The assignment between processor nodes and grid blocks is
the same as used for the grid partitioning method for the
Navier Stokes solver.

Now we introduce a host node parallelization scheme,
where the host processor generates the starting locations
and initial conditions of the dispersed particles within the
flow domain. Tn a first stage of the calculation this particle
initial conditions (p.i.c.) are passed to the processor nodes
1,..., N for determination of the grid block number where
particle trajectory calculation has to be initiated. After
that the host processor distributes the p.i.c. to the node
processor with the corresponding grid block number for pro-
cessing. Nodes 1,..., N calculate the particle trajectory
segments from the entry point to their 7own” grid block
(from an inlet cross section or from a boundary to a neigh-
bouring grid block) to their exit location (block boundary or
outlet cross section). After a particle trajectory has reached
such an exit location on a certain node/grid block the par-
ticle state at the block boundary is returned to the host
process. There it is treated as a new p.i.c. for the neigh-
bouring block/processor node until all particle trajectories



have satisfied certain break condition (e.g. an outlet cross
section is reached). During the particle trajectory calcu-
lation process the source terms for momentum exchange
between the two phases are calculated locally on the pro-
cessor nodes 1,..., N from where they can be passed to the
Navier Stokes solver without further processing (Fig. 2).
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Fig. 2: Domain decomposition approach for the Lagrangian
solver.

An advantage of the domain decomposition approach is
that it is easy to implement and uses the same data distribu-
tion over the processor nodes as the Navier Stokes solver.
But load balancing can be a serious disadvantage of this
method as shown later for the presented test case. Poor
load balancing can be caused by different circumstances, as
there are :

1. Unequal processing power of the calculating nodes; e.g.
in a heterogenous workstation cluster.

2. Unequal size of the grid blocks of the numerical
grid. This results in different numbers of control vol-
umes/grid cells per processor node and in unequal work
load for the processors.

These reasons for poor load balancing are common to
all domain decomposition approaches and apply to the
parallelization method for the Navier Stokes solver as
well.

3. Differences in particle concentration distribution

throughout the flow domain.  Situations of poor
load balancing can occur e.g. for flows around free
jets/nozzles, in recirculating or highly separated flows
where most of the numerical effort has to be performed

by a small subset of all processor nodes used.

4. Multiple particle wall collisions.  Highly frequent
particle wall collisions occur especially on curved walls
where the particles are brought in contact with the wall
by the fluid flow multiple times. This results in a higher
work load for the corresponding processor node due to
the reduction of the integration time step and the ex-
tra effort, for detection/calculation of the particle wall

collision 1tself.

5. Flow regions of high fluid velocity gradients/small fluid
turbulence time scale. This leads to a reduction of
the integration time step for the Lagrangian approach
in order to preserve accuracy of the calculation and
therefore to a higher work load for the corresponding
processor node.

Most of these factors leading to poor load balancing in the
domain decomposition approach cannot be foreseen with-
out prior knowledge about the flow regime inside the flow
domain (e.g. from experimental investigations). Therefore
an adjustment of the numerical grid to meet the load bal-
ancing requirements by redistribution of grid cells is almost
impossible. The second parallelization method shows how
to overcome these limitations.

Distributed Shared Memory Approach For The
Lagrangian Solver
This parallelization method also uses the host node

programming model and the same distribution of fluid flow
data among the processor nodes of the parallel machine as
in the previous method. Also the task of the host processor
node is basically unchanged. But in contrast to the domain
decomposition approach the assignment of a processor node
to a certain grid block is not static over the period of the
calculation process.
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Fig. 3: Distributed shared memory approach for the La-
grangian solver.

If a request of a node processor for a new p.i.c. for
the currently processed grid block cannot be satisfied by
the host processor, then an p.i.c. for another grid block
is submitted to the node. The calculating node is now
able to obtain necessary geometry and fluid flow data for



the calculation of the trajectory segment on the grid block
corresponding to the assigned p.i.c. In the current imple-
mentation this is achieved by introduction of N additional
tasks (N+1), ..., 2N, called 'memory manager’ nodes. The
memory manager tasks provide memory for the fluid flow
data, source terms and mean particle flow characteristics of
the grid block corresponding to their processor node num-
ber minus N and remains in a permanent message loop
waiting for requests from other caleulating nodes (Fig. 3).

Tt has to be mentioned that the memory manager tasks
do not have to be implemented as independent node pro-
cesses running on a separate physical node, since their work
load is quite neglectable. Tn EXPRESS they can be imple-
mented as message induced procedure calls (remote exe-
cution by active messages) on the calculating nodes using
their memory. As soon as threads become available in MPT
2 they can also be implemented as separate threads running
on the same physical processor node as the corresponding
calculating task. Tn current PVM 3 and MPT 1 implemen-
tations the memory manager tasks are implemented as sep-
arate node processes. Although on parallel machines allow-
ing multiple processes per physical processor node they can
be executed parallel to the corresponding calculating pro-
cess on the same physical processor node.

The delivery of fluid flow data to the calculating nodes
can be established in two different ways :

1. Tf a particle trajectory crosses a certain control vol-
ume/grid cell, the fluid flow data corresponding to this
grid cell and to the nearest neighbouring grid cells in
each coordinate direction are required for further cal-
culation. Now the fluid flow data for these 5 control
volumes can be delivered at a time (further referred
to as DSM Point method). Even this method intro-
duces more frequent communications with lower vol-
ume of transfered data it can be advantageous in de-
pendence on the computer hardware and the size of
the grid blocks of the numerical mesh because only a
1 dimensional subset of the fluid flow data has to be
transfered for the calculation of the particle trajectory.

2. Otherwise the full information about the fluid flow
data corresponding to the grid block of the assigned
p.a.c. can be transfered on the first request from the
calculating node (further referred to as DSM Block
method). This method is more advantageous for par-
allel computer architectures with fast communication
network and high bandwith of communication.

In addition to the previous method the host processor is
used for optimization of the assignment of p.i.c. to the
calculating processor nodes. In the case of a request for
a new p.a.c. the following order of precedence for p.i.c.
selection is used :

1. The number of unprocessed p.i.c. on the grid block cor-
responding to the node number of the requesting pro-
cessor node (its own” grid block) exceeds a threshold
value. Then a p.i.c. for this grid block is submitted.

2. There are unprocessed p.i.c. for the grid block the
requesting node is currently working on (may be not
the "own” grid block).

3. There are unprocessed p.i.c. for the nodes "own” grid

block.

4. There are unprocessed p.i.c. for other grid blocks.
Then p.i.c. for the grid block with the maximum work
load is submited to the requesting node processor.

As shown below one of the greatest advantages of the dis-
tributed shared memory approach for the Lagrangian solver
is the automatically established load balancing which 1s in-
dependent of all contributing factors discussed in 3.2. Dis-
advantageous are the higher memory requirements and a
slightly higher inter processor communication.

3. PVM/MPI IMPLEMENTATIONS AND THE
MIMD COMPUTER ARCHITECTURES

The parallelization methods are implemented using the
PVM and MPIT implementations on the Parsytec GC 128
and the Cray T3D. The PVM implementations are a subset
of PVM 3.2 while the MPT implementations are in compli-
ance with MPT 1.1 standard. Both the PVM and the MPI
implementation on this MIMD machines do not support
parallel computing on heterogenous computer platforms.
But this is not a limitation for the resulting implementation
for the Fulerian/Tagrangian solver which can be applied
e.g. to heterogenous workstation clusters as well.

The code was developed and tested on two different
massively parallel MTMD architectures. The Parsytec GO
128 of the Technical University of Chemnitz is based on 80
MHz Motorola PowerPC 601 80 with a maximum of 128
processors, 32 MB memory each. Processors are arranged
in a 2 dimensional communication network (grid) deliver-
ing a communication bandwith of 35 MB/s sustained and
80 MB/s peak, a setup time of 5 us and a minimum network
latency of 40 ps.

The Cray T3D at the Edinburgh Parallel Computing
Centre (EPCC) consists of 512 150 MHz 21064 Alpha pro-
cessor nodes, each with 64 MB of local memory. Nodes
are arranged 1n a 3 dimensional torus, with each of the six
links from each node simultaneously supporting hardware
transfer rates of up to 300 MB/s.

Fig. 4: Numerical mesh for staggered tube rows with 8

different grid blocks.

4. TEST CASE, RESULTS AND DISCUSSION

4.1. Formulation Of The Test Case
For the test case a gas particle flow through an arrange-

ment of staggered tube rows has been choosen as it is used
e.g. for heat exchangers. Fig. 4 shows the numerical mesh
for the geometry of the flow domain for a subdivision into 8



grid blocks. The flow enters the flow geometry from the left
with up = 10 m/s and has the outlet cross section on the
right. Symmetry boundary conditions are applied to the
upper and lower boundary of the flow geometry. The gas
phase (air under normal conditions) carries a disperse phase
of particles with up = 9...11 m/s, dp = 20...500 pm and
pp = 2500 kg/m? which are uniformly distributed over the
inlet cross section.
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Fig. 6: Execution time for PVM implementation on Cray
T3D.

For the test case only one iteration cycle of the solution
procedure has been executed. For the Navier Stokes solver
the number of iterations on each grid level was restricted to
3000 and the number of particle trajectories calculated by
the Lagrangian solver was 20000. Due to CPU time restric-
tions on the Cray T3D the number of particle trajectories
for these test case runs has to be decreased to 1000. For
comparison the measured execution times for the Parsytec
GC 128 are divided by the appropriate factor. Test case
calculations have been performed for different subdivisions
of the flow geometry into 4, 8, 16, 32 and 64 grid blocks
(each with 2 grid levels of refinement) on the correspond-
ing number of processor nodes. But it has to be mentioned
that the numerical mesh with 4 grid blocks contains only
half the number of control volumes of the other numerical
meshes. This was caused by restrictions in mesh genera-
tion for the given geometry. But the results show, that
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Fig. 7: FExecution time for MPT implementation on Cray

T3D.
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Fig. 8: Comparison of domain decomposition approach for
Parsytec GC 128 and Cray T3D.

the calculations on this slightly changed configuration for
4 grid blocks are unfortunately not fully comparable with
the other test case results.

4.2. Results Of Performance Evaluations

For the test case calculations the total execution time,
calculation time, communication time and T/O time have
been measured for the execution of one iteration cycle of
the Lagrangian solver. From these measurements the dif-
ference time (= total exec. time - calc. time - comm. time
- T/0O time) has been calculated. This difference time con-
tains mainly the waiting time for the processor nodes in
synchronous receive operations and global barriers (what
can also be established from Fig. 11 and Fig. 12).

Now Fig. 5  Fig. 7 show the results for the total
execution time for the 3 different parallelization methods
and for both the PVM and MPT implementations on the
Parsytec GC 128 and Cray T3D. While execution time for
all 3 different methods increases on 64 processor nodes on
the Parsytec GC 128 in comparison with the results on
32 nodes, the execution times on the Cray T3D could be
further decreased even for 64 processor nodes. This behav-
ior is mainly caused by the slower communication network
and a hardware bottleneck for calculations on more than
64 processor nodes on the Parsytec machine.
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Fig. 6 for the PVM implementation shows the advan-
tage of the distributed shared memory approach for the
Lagrangian solver with a slight gain in performance for the
DSM Block method. But they also show, that execution
times for the calculations on 64 nodes were almost deter-
mined by communication and T/O time (which is about
2/3 of the total execution time). Because calculation times
show further decrease by a factor of 0.63, better scaling re-
sults can be expected for larger tasks (larger grid blocks,
greater number of control volumes and/or more particle
trajectories to calculate).

Fig. 7 shows the improvements introduced in the MPT
implementation of the 3 parallelization methods. Total ex-
ecution time of all 3 methods could be further decreased
which is most remarkable for the distributed shared mem-
ory approach (see also Fig. 9 and Fig. 10). Since the
better performance was achieved by reduction in communi-
cation time this results also in a better scalability over the
nvestigated range of processor node numbers used in the
calculations.

4.3. Load Balancing
The results shown in Fig. 8 are quite unexpected be-

cause nearly equal performance of the Parsytec GC 128
and the Cray T3D is observed for the domain decomposi-
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Fig. 12: Work load distribution for distributed shared mem-
ory approach (DSM Block).

tion approach over the range from 4 to 32 processor nodes.
An explanation of this behavior can be found in Fig. 11
and Fig. 12. These figures show the different contribu-
tions to the total execution time for test case runs on 8
processor nodes on the Cray T3D (MPT implementation).
Tt can be found from the figures, that 1) difference time
consists mainly of waiting time for the T/O performed by
other processor nodes and 2) T/O time takes about 9 14%
of the total execution time (this part of the total execu-
tion time remains constant for all numbers of nodes). But
the most important thing to point out from these figures
are the great differences in load balancing for the calcu-
lating processor nodes for the domain decomposition and
the distributed shared memory approach. The total exe-
cution time of the domain decomposition approach (Fig.
11) is mainly determined by the calculation time spent on



the inner grid blocks surrounding the tubes, which is ef-
fected by multiple particle wall collisions and strong fluid
velocity gradients (integration time step reduction). These
influences on calculation time cannot be observed on the
rectangular grid blocks near the inlet and outlet cross sec-
tions. This causes greater differences in the work load of the
processor nodes and a poor load balancing. Consequently
this poor load balancing is the limiting factor for the do-
main decomposition approach and leads to the unexpected
results in Fig. 8. On the contrary, Fig. 12 shows a homoge-
nous work load distribution over the calculating processor
nodes for the distributed shared memory approach. Even
if the amount of communication is higher in this method,
better performance results can be obtained on MIMD sys-
tems with a high bandwith of the communication hardware
as e.g. for the Cray T3D.

5. CONCLUSIONS

The paper presents two parallelization methods for Fu-
lerian /T.agrangian calculations of disperse multiphase flows
together with their PVM and MPT implementations. Per-
formance results are given for a typical test case and for
two different massively parallel MIMD architectures. The
obtained results show besides the general applicability of
the parallelization methods for parallel computers with dis-
tributed memory and message passing paradigm the impor-
tance of homogenous work load distribution which has to
be treated differently in comparison with domain decom-
position methods for single phase flow calculations. With
the presented distributed shared memory approach remark-
able speed up can be achieved for parallel calculations on
a moderate number of processor nodes which makes calcu-
lations of complex multiphase flows possible in reasonable
time.
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