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ABSTRACTA Lagrangian solver for the numerical simulation of dis-perse multiphase ows is presented. The solver is applicableto the prediction of ows in complex geometries. The owdomain is descretized by a block-structured numerical gridconsisting of arbitrary hexahedral control volumes. Em-phasis is layed on the treatment of geometrical issues. In aboundary �tted grid the corner points of the control volumefaces do not necessarily form a at surface. For porpuses ofparticle localization and particle tracing the representationof the control volume is changed to a dodecahedral one.Two di�erent methods are presented for the localizationof a particle's initial position in a grid block. Further ane�cient algorithm is given for tracing a particle on the nu-merical grid. By using this algorithm the source terms dueto particle-uid interaction can be calculated simultanouslywhen searching the new particle location. Test case calcu-lations are presented for the ow in a cyclone seperator.NOMENCLATURECD; CA; CM coe�cientsHr roughness heightLr roughness lenghtRe Reynolds numberS� source term

SP� source term due to particle-uidinteractionV volumee koe�cient of restitutionf koe�cient of kinetic frictiong gravitational accelerationk turbulence kinetic energym masst timeu; v; w velocity in x-, y- and z-directionvrel absolute value of particle-uidrelative velocity� generall transport coe�cient� general variable in transport equation
 uid rotation inclination angle of rough wall� dissipation� kinematic viscosity�m coe�cient� density! particle rotational velocity!rel absolute value of particle-uidrelative rotational velocity1



SubscriptsF uidP particle1. INTRODUCTIONThere are many ow situations in mechanical engineer-ing and process technology where disperse multiphase owsplay an important role. In many cases particulate two{phase ows have to be predicted in large scale facilities withgeometrically complex ow domains. Real ow regimes are3{dimensional and cannot be restricted to 2{dimensionalnumerical studies. Examples for such complex ow regimescan be found e.g. in particle separators/cyclones or in pul-verized coal �red furnaces.The objective of this work was to develop an Eule-rian/Lagrangian approach for the numerical prediction of3{dimensional, particulate two{phase ows. Special at-tention was payed to aspects of geometrical representa-tion and approximation of the ow domain, to algorithmsfor particle localization on a 3{dimensional numerical grid,for particle tracking throughout a complex geometry andfor the particle{wall interaction with an arbitrary inclinedwall in 3{dimensional space. All developments were car-ried out having in mind that the parallelization methodsdeveloped in [Frank, 1996, Frank and Wassen, 1996] for 2{dimensional, disperse multiphase ow simulations should beapplicable to the 3{dimensional algorithm as well.2. SOLUTION OF THE EQUATIONS OF FLUID MO-TIONThe two{phase (gas{particle) ow under considerationis described by assuming that the particulate phase is dilute,but the particle loading can be appreciable. Inter{particlee�ects are neglected, but the e�ect of the particles on thegas ow are taken into account by the PSI{Cell approach[Crowe et al., 1977, Crowe, 1982]. The two{phase ow isstatistically steady, incompressible and isothermal. Underthese assumptions the time{averaged form of the governinggas{phase equations can be expressed in the form of thegeneral transport equation :@@x (�F uF �) + @@y (�F vF�) + @@z (�F wF�) =@@x �� @�@x�+ @@y �� @�@y �+ @@z �� @�@z �+S� + SP� (1)where � stands for uF , vF , wF , k and ". The terms S� and� are discussed in more detail in [Frank and Wassen, 1996].SP� represents the coupling of both phases and is cal-

culated by solving the Lagrangian equations of parti-cle motion using the PSI{cell{method [Crowe et al., 1977,Frank and Wassen, 1996].The above equations of uid motion are solved bythe program package FAN{3D developed by Peri�c andLilek [Peri�c and Lilek, 1993]. FAN{3D is basically the 3{dimensional extension of the 2{dimensional algorithm de-scribed in [Per�c, 1989, Peri�c, 1992]. The most fundamentalfeatures of FAN{3D are :� use of non{orthogonal, boundary �tted, numeri-cal grids with arbitrary hexahedral control volumes(see Fig. 1),� use of block structured numerical grids for optimumge-ometrical approximation of complex ow domains andfor parallelization purposes;� colocated variable arrangement; Cartesian vector andtensor components;� �nite volume solution approach of SIMPLE kind[Peri�c, 1992, Patankar, 1980].3. THE 3{DIMENSIONAL LAGRANGIAN APPROACH3.1. Equations of motion of the dispersed phaseThe disperse phase is treated by the Lagrangian ap-proach where a large number of particles is calculatedthroughout the ow domain. Each particle trajectory rep-resents a fraction of the overall particle mass loading ex-pressed by the particle number ow rate _NP along the calcu-lated trajectory. For the formulation of particles equationsof motion a small density ratio �F =�P is assumed. So thedrag force, the lift force due to particle rotation (Magnusforce), the lift force due to shear in the uid ow (Sa�manforce), the gravitational and added mass force are taken intoaccount [Frank, 1992, Tsuji et al., 1991].ddt 24 xPyPzP 35 = 24 uPvPwP 35 (2)ddt 24 uPvPwP 35 =34 �F(�P + �F =2)dP 0@vrelCD(ReP )24 uF � uPvF � vPwF � wP 35+ vrel!relCM(�) �2



24 (vF � vP )(!z � 
z)� (wF � wP )(!y � 
y)(wF � wP )(!x � 
x)� (uF � uP )(!z �
z)(uF � uP )(!y � 
y)� (vF � vP )(!x � 
x) 35+ 2�1=2�
1=2CA 24 (vF � vP )
z � (wF �wP )
y(wF � wP )
x � (uF � uP )
z(uF � uP )
y � (vF � vP )
x 351A+ �P � �F�P + �F =2 24 gxgygz 35 (3)ddt 24 !x!y!z 35 = � 1516� �F�P !rel�m 24 !x � 
x!y � 
y!z � 
z 35 (4)with :ReP = dP vrel� ; vrel =q(uF � uP )2 + (vF � vP )2 ;� = 12 dP!vrel ; �m = �m(Re!) ;!rel =q(!x � 
x)2 + (!y � 
y)2 + (!z �
z)2The various coe�cients CD, CM , CA, �m in the above equa-tions and other model constants, e.g. restitution coe�ciente and coe�cient of kinetic friction f in the particle{wallcollision model are taken from literature [Frank, 1992]. Thee�ect of turbulence of the uid ow on the motion of thedispersed phase is simulated by the Lagrangian stochastic{deterministic (LSD) turbulence model [Milojevi�c, 1990].Thegeneral numerical solution procedure for the coupled systemof uid and particles equation of motion is described in de-tail in [Frank and Wassen, 1996] and is applicable to the3-dimensional ow simulation as well.But for a successful adaptation of this numerical ap-proach to the 3{dimensional representation of the ow do-main geometry some basic problems have to be solved :� e�cient particle localization algorithms to �nd particleinitial conditions on the numerical grid;� particle tracing algorithm for particle trajectory calcu-lation throughout the ow domain, which is divided inseveral grid blocks;� e�cient interpolation of uid ow properties at the cur-rent particle location;

� treatment of particle{wall collisions with arbitrary in-clined wall surfaces;� calculation of source terms for particle{uid interactionand of mean properties of the dispersed phase for dataanalysis and post{processing purposes.3.2. Control volumes and the numerical gridThe numerical approach of FAN{3D is based on a �-nite volume discretization scheme for the general transportequation (1). Therefore the block{structured numerical gridconsists of hexahedral control volumes (CV) which can beregarded as topological equivalent to cubes (see Fig. 1).The grid blocks can be arbitrarily interconnected with theonly limitation, that a face of a CV on one side of such aninter{block boundary has a corresponding cell face on theneighbouring grid block boundary. In general the quadran-gular faces of the single CV's are not plane surfaces. Butthe only information given about the shape of this cell facesby the numerical grid representation are the coordinates ofthe 4 corner points.For the particle trajectory calculations this representa-tion of a CV is complemented by 6 diagonals of the faces(Fig. 1) converting every CV to a dodecahedron with planetriangular faces. This leads to a well{determined subdivi-sion of the ow domain in �nite volumes without overlap-ping regions and "empty space" between CV's. Now thissubdivision allows a well{de�ned assignment between a cer-tain particle location in space and the corresponding CV onthe numerical grid. Furthermore the conversion of hexahe-dral to dodecahedral CV's allows the decomposition of aCV in 6 tetrahedral sub{CV's (Fig. 2). This decomposi-tion can be used for e�cient implementation of geometricalalgorithms for the 'point-inside-a-polyhedron' problem.3.3. Localization of the particle initial conditionsIn order to start the Lagrangian particle trajec-tory calculation it is neccessary to �nd the correspond-ing CV on the numerical grid for each particle initialcondition PI = (xPI ; yPI ; zPI) with the particle state(~vPI ; ~!PI ; dPI ; _NPI ; TPI ; : : :). For orthogonal numericalgrids with cell faces parallel to the coordinate axes the prob-lem can easily be solved by comparing the grid line coor-dinates of a certain grid block with the coordinates of theinitial condition PI :xi�1 � xPI � xi; yj�1 � yPI � yj ; zk�1 � zPI � zkFor complex 3{dimensional grids of the given type the prob-lem is muchmore complicated. There are two basic methodsfor the point{location problem.Method a) :This method was proposed by Preparata et al. in3



[Preparata and Shamos] and is called the 'single{shot ap-proach'. Consider that it has to be determined wether theparticle initial condition PI lies inside a certain part of thenumerical grid or not. Therefor we pass a ray from PI toa point P1 outside of the whole grid geometry (Fig. 3).Now all crosspoints Si of ray �!PIP1 with the surface of thegrid substructure can be determined. As mentioned abovethis surface consists of the triangular faces of the includeddodecahedral CV's. It can be shown that PI lies inside thisgrid substructure if the number of intersections Si is odd.Starting the analysis with a single grid block of the nu-merical grid a progressive bisection leads to the CV whichcorresponds to the coordinates of PI (Fig. 4).If N3 is the number of CV's in a grid block than it isstraightforward to recognize that the numerical e�ort forthis method EN � O(N2) for an almost cubic arrangementof grid cells. But EN can increase to O(N3) for the worstcase when grid cells are arranged in a single row. Furtherit has to be mentioned that the method is 'fragil' in somesense. If the ray �!PIP1 passes through an edge or corner or isparallel to a face of the grid substructure under investigationthe method gives no result. This problem can only be solvedby changing the coordinates of the point P1.Method b) :This approach is based upon the fact, that the positionof a point to a plane surface can easily be determined fromits normal equation. Applying this to the four faces of a te-trahedron and subsequently to the six tetrahedral sub{CV'sof a dodecahedral CV it can be decided wether a point PIlies inside a certain CV of our numerical grid or not. Thismethod is 'robust', that means it can be applied under allcircumstances to any combination of particle initial condi-tions PI and control volumes of the numerical grid. Butunfortunately the numerical e�ort of this method is alwaysEN � O(N3).A comparison of both methods shows that method a)is very e�cient for larger grid substructures with a totalnumber of grid cells greater than 102. If the progressivebisection of method a) leeds to smaller grid substructuresmethod b) is more advantageous.3.4. Particle tracing and calculation of source termsIf the particle initial conditions are localized on the nu-merical grid the particle equations of motion (2){(4) canbe solved using a standard Runge{Kutta solution schemeof 4th order accuracy with automatic time step correction.For a given particle location P1(t) the new calculatedparticle location P2(t + �t) has to be assigned to its cor-responding CV on the numerical grid. First for the CVcorresponding to P1(t) all intersections of �!P1P2 with the

CV faces for which the scalar product (~n; �!P1P2) � 0 haveto be determined, where ~n is the outer normal vector ofthe CV face. The particle trajectory leaves the CV sur-rounding P1(t) through the face for which �!jP1Sij is mini-mal. This leeds to the next neighbouring CV crossed bythe particle path �!P1P2. Applying this method subsequentlyto all neighbouring CV's which are crossed by the particlepath �!P1P2 leeds to the CV surrounding the new particlelocation P2(t + �t). Fortunately this particle tracing pro-cedure can simultanously be used for the calculation of thesource terms due to particle{uid interaction, since as a re-sult of the particle tracing procedure all intersections of theparticle trajectory segment �!P1P2 with CV faces lying be-tween these two particle states are determined. This allowssimultanous summation of source term contributions :SPui = � 1Vij XmP _NP ��uPi;out � uPi;in � gi �P � �F�P + �F =2(tout � tin)� (5)for the grid cells crossed by the particle trajectory segment�!P1P2 during the Runge{Kutta time step �t. The particleproperties at the intersections Si have to be linearly inter-polated along �!P1P2. The value of the uid ow variable �at a certain particle location P = (xP ; yP ; zP ) has to beinterpolated from the value of � in the corresponding CVby : �jP = �jCV + @�@x ����CV (xP � xC)+ @�@y ����CV (yP � yC) + @�@z ����CV (zP � zC ) (6)where ~rC = (xC ; yC; zC) are the coordinates of the CV cen-tre point.3.5. Particle{wall interactionThe majority of industrially important dispersemultiphase-ows are con�ned ows, e.g. ows in cy-clone seperators or in pneumatic conveying pipe systems.Especially the motion of large particles, which is dom-inated by inertia, is strongly inuenced by the con�ne-ment. Considering the wall-collision process it has beenshown that irregularities due to wall-roughness and/or de-viation of particle shape from sphere play an important role[Frank, 1992, Matsumoto et al., 1976, Tsuji et al., 1985].In this study the particle-wall collisions are simulatedaccording to the irregular bouncing model by Sommerfeld4



[Sommerfeld, 1992]. The particle collides with an inclinedvirtual wall. The inclination angle  is sampled from aGaussian distribution with a mean value of 0� and a stan-dard deviation of �. � depends on the particle diameterdP and the roughness parameters and may be estimated by:� = arctan 2�HrLr for dP � Lrsin(arctan 2HrLr )� = arctan 2HrLr for dP < Lrsin(arctan 2HrLr ) (7)Here Lr is the mean cycle of roughness, Hr is the meanroughness height and �Hr is the standard deviation of theroughness height. Since no preferential direction of rough-ness is assumed, the inclined virtual wall is additionallyturned around the normal vector of the original wall by anazimuthal angle �a. This azimuthal angle is sampled froma uniform distribution in the range [��; �].The particle velocities and angular velocities are trans-formed to a coordinate system that is aligned with the col-lision plane. For the following equations it is assumed thatthe y-axis of the transformed coordinate system is identicalto the normal vector of the collision plane. The computa-tion of the velocities and angular velocities after rebound iscarried out by applying the impulse equations and takinginto account the sort of collision, i.e. sliding or non-slidingcollision [Tsuji et al., 1985]:1. sliding collision for : � 27 f (e+1) � v(1)pjvrj � 0 :u(2)p = u(1)p + �x f (e+ 1) v(1)p ;v(2)p = � e v(1)p ;w(2)p = w(1)p + �z f (e + 1) v(1)p ;!(2)x = !(1)x � 5dp �z f (e+ 1) v(1)p ;!(2)y = !(1)y ;!(2)z = !(1)z + 5dp �x f (e + 1) v(1)p (8)2. non-sliding collision for : v(1)pjvrj < � 27 f (e+1) :u(2)p = 57 (u(1)p � dp5 !(1)z ) ;v(2)p = � e v(1)p ;w(2)p = 57 (w(1)p + dp5 !(1)x ) ;!(2)x = 2dp w(1)p ;

!(2)y = !(1)y ;!(2)z = � 2dp u(1)p (9)with :jvrj = r(u(1)p + dp2 !(1)z )2 + (w(1)p � dp2 !(1)x )2and : �x = u(1)p + dp2 !(1)zjvrj ; �z = w(1)p � dp2 !(1)xjvrjIn these equations e is the coe�cient of restitution and f isthe coe�cient of kinetic friction. The superscripts (1) and(2) indicate values before and after collision, respectively.4. PARALLELIZATIONIn [Frank, 1996, Frank and Wassen, 1996] was shownthat the Eulerian/Lagrangian approach for numerical sim-ulations of disperse multiphase ows is well suited for cal-culations on massively parallel computers (MIMD). This iseven more important in the case of complex 3{dimensionalow situations. Both parallelization methods investi-gated in [Frank and Wassen, 1996] are applicable to the3{dimensional Lagrangian approach presented in this pa-per without limitations. Because parallelization of the La-grangian approach is carried out by parallelization in spaceusing the domain decomposition method the described al-gorithms are applicable to steady and unsteady ow calcu-lations as well.5. GAS{PARTICLE FLOW IN A STANDARD CY-CLONEThe 3-dimensional Lagrangian approach was applied tothe gas{particle ow in a standard cyclon (Fig. 6). The testcase calculations were based on experimental investigationsof precipitation rates of a series of geometrically similiar cy-clons published in literature [K�onig, 1990]. The geometryof the cyclon investigated in this paper was determined by:Diameter of the cyclon D = 40 mmHeight of the cyclon H = 195 mmInlet cross section a� b = 4:5 mm � 18 mmDiameter of the gas exit dT = 10 mmHeight of the gas exit hT = 31 mmDiameter of the particle exit dB = 10 mmCalculations were performed for di�erent inlet gas veloci-ties of �!vF= 5 m=s to �!vF = 25 m=s with the corresponding5
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Figure 2: Decomposition of a dodecahedral control volume.
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Figure 4: Search for particle position PI by progressive bi-section of the grid substructure.7
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Figure 6: Scheme of the standard cyclon used in the gas-particle ow calculations for prediction of precipitation rate.

Figure 7: Block structure of the numerical grid in the upperpart of the cyclon.

Figure 8: Calculated particle trajectories for inlet velocity10 m=s.8


