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ABSTRACT SE source term due to particle-fluid
A Tagrangian solver for the numerical simulation of dis- interaction
perse multiphase flows is presented. The solver is applicable Vv volume
to th§ pl.‘e(]](’,tl()‘n .of flows in complex geometries. The ﬂo.vv . Koefficient of restitution
domain is descretized by a block-structured numerical grid ) o
consisting of arbitrary hexahedral control volumes. Fm- f koefficient of kinetic friction
phasis is layed on the treatment of geometrical issues. In a 9 gravitational acceleration
boundary fitted grid the corner points of the control volume k turbulence kinetic energy
faces do not necessarily form a flat surface. For porpuses of m mass
particle localization and particle tracing the representation 4 time
of the control volume is changed to a dodecahedral one. _ . .
. . w, v, w velocity in x-, y- and z-direction
Two different methods are presented for the localization ] )
of a particle’s initial position in a grid block. Further an Vrel a,bsol.ute Va’h]? of particle-fluid
fficient algorithm is given for tracing a particle on the nu- relative velocity
efficient, alg g gap
merical grid. By using this algorithm the source terms due r generall transport coefficient
to particle-fluid interaction can be calculated simultanously P general variable in transport equation
when searching the new particle location. Test case calcu- 9] fluid rotation
lations are presented for the flow in a cyclone seperator. ~ inclination angle of rough wall
€ dissipation
NOMENCLATURE v kinematic viscosity
Cp,Ca, Cyr coefficients & coefficient,
H, roughness height P density
Ly roughness lenght W particle rotational velocity
Re Reynolds number Wrel absolute value of particle-fluid

So source term

relative rotational velocity



Subscripts
F flid
P particle

1. INTRODUCTION

There are many flow situations in mechanical engineer-
ing and process technology where disperse multiphase flows
play an important role. Tn many cases particulate two
phase flows have to be predicted in large scale facilities with
geometrically complex flow domains. Real flow regimes are
3 dimensional and cannot be restricted to 2 dimensional
numerical studies. Examples for such complex flow regimes
can be found e.g. in particle separators/cyclones or in pul-
verized coal fired furnaces.

The objective of this work was to develop an FEule-
rian/Lagrangian approach for the numerical prediction of
3 dimensional, particulate two phase flows. Special at-
tention was payed to aspects of geometrical representa-
tion and approximation of the flow domain, to algorithms
for particle localization on a 3 dimensional numerical grid,
for particle tracking throughout a complex geometry and
for the particle wall interaction with an arbitrary inclined
wall in 3 dimensional space. All developments were car-
ried out having in mind that the parallelization methods
developed in [Frank, 1996, Frank and Wassen, 1996] for 2
dimensional, disperse multiphase flow simulations should be
applicable to the 3 dimensional algorithm as well.

2. SOLUTION OF THE EQUATIONS OF FLUID MO-
TION

The two phase (gas particle) flow under consideration
is described by assuming that the particulate phase is dilute,
but the particle loading can be appreciable. Inter particle
effects are neglected, but the effect of the particles on the
gas flow are taken into account by the PSIT Cell approach
[Crowe et al., 1977, Crowe, 1982]. The two phase flow is
statistically steady, incompressible and 1sothermal. Under
these assumptions the time averaged form of the governing
gas phase equations can be expressed in the form of the
general transport equation :
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where @ stands for up, vp, wp, k and €. The terms Sg and
T" are discussed in more detail in [Frank and Wassen, 1996].
SE represents the coupling of both phases and is cal-

culated by solving the Lagrangian equations of parti-
cle motion using the PST cell method [Crowe et al., 1977,
Frank and Wassen, 1996].

The above equations of fluid motion are solved by
the program package FAN 3D developed by Peri¢ and
Lilek [Peri¢ and Tilek, 1993]. FAN 3D is basically the 3
dimensional extension of the 2 dimensional algorithm de-
scribed in [Peré, 1989, Peri¢, 1992]. The most fundamental
features of FAN 3D are :

e use of mnon orthogonal, boundary fitted, numeri-
cal grids with arbitrary hexahedral control volumes
(see Fig. 1),

e use of block structured numerical grids for optimum ge-
ometrical approximation of complex flow domains and
for parallelization purposes;

e colocated variable arrangement; Cartesian vector and
tensor components;

e finite volume solution approach of SIMPLE kind
[Perié, 1992, Patankar, 1980)].

3. THE 3-DIMENSIONAL LAGRANGIAN APPROACH

3.1. Equations of motion of the dispersed phase
The disperse phase is treated by the Lagrangian ap-

proach where a large number of particles is calculated
throughout the flow domain. Fach particle trajectory rep-
resents a fraction of the overall particle mass loading ex-
pressed by the particle number flow rate Np along the calcu-
lated trajectory. For the formulation of particles equations
of motion a small density ratio pr/pp is assumed. So the
drag force, the lift force due to particle rotation (Magnus
force), the lift force due to shear in the fluid flow (Saffman
force), the gravitational and added mass force are taken into
account [Frank, 1992, Tsuji et al., 1991].
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The various coefficients Cp, Car, C'4, & 1n the above equa-
tions and other model constants, e.g. restitution coefficient
e and coefficient of kinetic friction f in the particle wall
collision model are taken from literature [Frank, 1992]. The
effect of turbulence of the fluid flow on the motion of the
dispersed phase 1s simulated by the Lagrangian stochastic
deterministic (.SD) turbulence model [Milojevié, 1990].The
general numerical solution procedure for the coupled system
of fluid and particles equation of motion is described in de-
tail in [Frank and Wassen, 1996] and is applicable to the
3-dimensional flow simulation as well.

But for a successful adaptation of this numerical ap-
proach to the 3 dimensional representation of the flow do-
main geometry some basic problems have to be solved :

e efficient particle localization algorithms to find particle
initial conditions on the numerical grid;

e particle tracing algorithm for particle trajectory calcu-
lation throughout the flow domain, which is divided in
several grid blocks;

e efficient interpolation of fluid flow properties at the cur-
rent particle location;

e treatment of particle wall collisions with arbitrary in-
clined wall surfaces;

e calculation of source terms for particle fluid interaction
and of mean properties of the dispersed phase for data
analysis and post processing purposes.

3.2. Control volumes and the numerical grid
The numerical approach of FAN 3D is based on a fi-

nite volume discretization scheme for the general transport
equation (1). Therefore the block structured numerical grid
consists of hexahedral control volumes (CV) which can be
regarded as topological equivalent to cubes (see Fig. 1).
The grid blocks can be arbitrarily interconnected with the
only limitation, that a face of a CV on one side of such an
inter block boundary has a corresponding cell face on the
neighbouring grid block boundary. In general the quadran-
gular faces of the single CV’s are not plane surfaces. But
the only information given about the shape of this cell faces
by the numerical grid representation are the coordinates of
the 4 corner points.

For the particle trajectory calculations this representa-
tion of a CV is complemented by 6 diagonals of the faces
(Fig. 1) converting every CV to a dodecahedron with plane
triangular faces. This leads to a well determined subdivi-
sion of the flow domain in finite volumes without overlap-
ping regions and "empty space” between CV’s. Now this
subdivision allows a well defined assignment between a cer-
tain particle location in space and the corresponding CV on
the numerical grid. Furthermore the conversion of hexahe-
dral to dodecahedral CV’s allows the decomposition of a
CV in 6 tetrahedral sub CV’s (Fig. 2). This decomposi-
tion can be used for efficient implementation of geometrical
algorithms for the ’point-inside-a-polyhedron’ problem.

3.3. Localization of the particle initial conditions
In order to start the Lagrangian particle trajec-

tory calculation it is neccessary to find the correspond-
ing CV on the numerical grid for each particle initial
condition Pr = (xzpr,ypr,zpr) with the particle state
(vpr,@pr,dpr, Npr,Tpr,...).
grids with cell faces parallel to the coordinate axes the prob-

For orthogonal numerical

lem can easily be solved by comparing the grid line coor-
dinates of a certain grid block with the coordinates of the

mitial condition Py :
2 <xpr <y,

Yir <ypr <y, 21 <zpr <z

For complex 3 dimensional grids of the given type the prob-
lem is much more complicated. There are two basic methods
for the point location problem.

Method a) :
This method was proposed by Preparata et al. 1n



[Preparata and Shamos] and is called the ’single shot ap-
proach’. Consider that it has to be determined wether the
particle initial condition Py lies inside a certain part of the
numerical grid or not. Therefor we pass a ray from Pr to
a point Py, outside of the whole grid geometry (Fig. 3).

Now all crosspoints S; of ray PrP., with the surface of the
grid substructure can be determined. As mentioned above
this surface consists of the triangular faces of the included
dodecahedral CV’s. Tt can be shown that P; lies inside this
grid substructure if the number of intersections S; 1s odd.
Starting the analysis with a single grid block of the nu-
merical grid a progressive bisection leads to the CV which
corresponds to the coordinates of Py (Fig. 4).

Tf N3 is the number of CV’s in a grid block than it is
straightforward to recognize that the numerical effort for
this method Fn ~ O(N?) for an almost cubic arrangement
of grid cells. But En can increase to O(N?) for the worst
case when grid cells are arranged in a single row. Further
it has to be mentioned that the method 1s 'fragil’ in some

sense. If the ray Pr Py passes through an edge or corner or 1s
parallel to a face of the grid substructure under investigation
the method gives no result. This problem can only be solved
by changing the coordinates of the point P.

Method b) :

This approach is based upon the fact, that the position
of a point to a plane surface can easily be determined from
its normal equation. Applying this to the four faces of a te-
trahedron and subsequently to the six tetrahedral sub CV’s
of a dodecahedral CV it can be decided wether a point Pr
lies inside a certain CV of our numerical grid or not. This
method 1s "robust’, that means it can be applied under all
circumstances to any combination of particle initial condi-
tions Pr and control volumes of the numerical grid. But
unfortunately the numerical effort of this method is always
Fn ~ O(N?).

A comparison of both methods shows that method a)
is very efficient for larger grid substructures with a total
number of grid cells greater than 102. Tf the progressive
bisection of method a) leeds to smaller grid substructures
method b) is more advantageous.

3.4. Particle tracing and calculation of source terms
If the particle initial conditions are localized on the nu-

merical grid the particle equations of motion (2) (4) can
be solved using a standard Runge Kutta solution scheme
of 4th order accuracy with automatic time step correction.

For a given particle location Py(#) the new calculated
particle location Po(f + At) has to be assigned to its cor-
responding CV on the numerical grid. First for the CV

corresponding to Py(t) all intersections of PP with the

CV faces for which the scalar product (7, P:PQ) > 0 have
to be determined, where 7 is the outer normal vector of
the CV face. The particle trajectory leaves the CV sur-

rounding P; (1) through the face for which |[PyS;| is mini-
mal. This leeds to the next neighbouring CV crossed by

the particle path P: P>. Applying this method subsequently
to all neighbouring CV’s which are crossed by the particle

path Py Py leeds to the CV surrounding the new particle
location Po(t + At). Fortunately this particle tracing pro-
cedure can simultanously be used for the calculation of the
source terms due to particle fluid interaction, since as a re-
sult of the particle tracing procedure all intersections of the

particle trajectory segment Py Py with CV faces lying be-
tween these two particle states are determined. This allows
simultanous summation of source term contributions :
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for the grid cells crossed by the particle trajectory segment

Py Py during the Runge Kutta time step A¢. The particle
properties at the intersections S; have to be linearly inter-

polated along P; P5. The value of the fluid flow variable ®
at a certain particle location P = (2p,yp,zp) has to be

interpolated from the value of ® in the corresponding CV
by :
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where 7 = (2¢, Yo, z¢) are the coordinates of the CV cen-
tre point.

3.5. Particle—wall interaction
The majority of industrially important disperse

multiphase-flows are confined flows, e.g. flows in cy-
clone seperators or in pneumatic conveying pipe systems.
Especially the motion of large particles, which is dom-
mated by inertia, is strongly influenced by the confine-
ment. Considering the wall-collision process it has been
shown that irregularities due to wall-roughness and/or de-
viation of particle shape from sphere play an important role
[Frank, 1992, Matsumoto et al., 1976, Tsuji et al., 1985].
In this study the particle-wall collisions are simulated

according to the irregular bouncing model by Sommerfeld



[Sommerfeld, 1992]. The particle collides with an inclined
virtual wall. The inclination angle v i1s sampled from a
Gaussian distribution with a mean value of 0° and a stan-
dard deviation of Ay. Av depends on the particle diameter

dp and the roughness parameters and may be estimated by:

L
Ay = arctan 228 for dp > -
7 T ~ sin(arctan 2:””)
L
A~y = arctan QTL for dp < —TQH (7)
o sin(arctan =)

Here 7. is the mean cycle of roughness, H, is the mean
roughness height and AH, is the standard deviation of the
roughness height. Since no preferential direction of rough-
ness is assumed, the inclined virtual wall is additionally
turned around the normal vector of the original wall by an
azimuthal angle o,. This azimuthal angle 1s sampled from
a uniform distribution in the range [—7, 7).

The particle velocities and angular velocities are trans-
formed to a coordinate system that is aligned with the col-
lision plane. For the following equations it is assumed that
the y-axis of the transformed coordinate system is identical
to the normal vector of the collision plane. The computa-
tion of the velocities and angular velocities after rebound 1s
carried out by applying the impulse equations and taking
into account the sort of collision, 1.e. sliding or non-sliding
collision [Tsuji et al., 1985]:
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In these equations e is the coefficient of restitution and f is
the coefficient of kinetic friction. The superscripts (1) and
(2) indicate values before and after collision, respectively.

4. PARALLELIZATION

In [Frank, 1996, Frank and Wassen, 1996] was shown
that the Eulerian/Tagrangian approach for numerical sim-
ulations of disperse multiphase flows is well suited for cal-
culations on massively parallel computers (MTMD). This is
even more important in the case of complex 3 dimensional
Both parallelization methods investi-
gated in [Frank and Wassen, 1996] are applicable to the
3 dimensional Lagrangian approach presented in this pa-

flow situations.

per without limitations. Because parallelization of the La-
grangian approach is carried out by parallelization in space
using the domain decomposition method the described al-
gorithms are applicable to steady and unsteady flow calcu-
lations as well.

5. GAS-PARTICLE FLOW
CLONE

The 3-dimensional Lagrangian approach was applied to
the gas particle flow in a standard cyclon (Fig. 6). The test

IN A STANDARD CY-

case calculations were based on experimental investigations
of precipitation rates of a series of geometrically similiar cy-
clons published in literature [Konig, 1990]. The geometry
of the cyclon investigated in this paper was determined by:

D =40 mm
H =195 mm
axb=45mm x 18 mm
d7 = 10 mm

Diameter of the cyclon
Height of the cyclon

Inlet cross section

Diameter of the gas exit
Height of the gas exit
Diameter of the particle exit

hr =31 mm
dp = 10 mm

Calculations were performed for different inlet gas veloci-
ties of vp= 5 m/s to vp= 25 m/s with the corresponding



volume flow rates of 1.46 m®/h to 7.29 m?/h. For the dis-
perse phase a fraction of quartz particles was used with the
given particle diameter distribution from [Kénig, 1990] and
a mean particle diameter of dp = 10.9 pm.

Due to the complex geometry of the cyclon a numerical
grid with 42 different grid blocks was designed for the nu-
merical calculations of the gas-particle flow (Fig. 7). The
first calculations agree qualitatively well with experiments

(Fig. 8).

6. CONCLUSIONS

The paper gives the formulation of a 3 dimensional La-
grangian approach applicable to flow domains with complex
geometrical boundary conditions. The treatment of parti-
cle localization, particle tracing and particle wall interac-
tion on 3 dimensional, block structured, boundary fitted
numerical grids are discussed in detail.

The TLagrangian approach is applied to the gas particle
flow in a standard cyclone. Results for particle precipitation
rates show the applicability of the approach to complex 3
dimensional multiphase flows.
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Figure 1: Shape of an arbitrary dodecahedral control vol-
ume of the numerical grid.
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Figure 2: Decomposition of a dodecahedral control volume.
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Figure 3: Localization of particle mitial conditions on the
numerical grid.

Figure 4: Search for particle position P; by progressive bi-
section of the grid substructure.
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Figure 5: Particle tracing from a given location Py (1) to the
new calculated particle location Py(t + At).
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Figure 6: Scheme of the standard cyclon used in the gas-
particle flow calculations for prediction of precipitation rate.
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Figure 7: Block structure of the numerical grid in the upper
part of the cyclon.
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Figure 8: Calculated particle trajectories for inlet velocity

10 m/s.



