Numerical prediction of the particle separation rate T(x)

by definition the particle separation rate T(x) is given by :

$$T(x) = 1 - \frac{\dot{N}_{clean\ gas}(x)}{\dot{N}_{feed}(x)}$$

The following particle separation criteria were used in numerical investigations.

Strong criterion:

A particle is assumed to be separated in the cyclone, if:

- 1. The particle sticks to the wall of the cyclone (that means the wall normal velocity of the particle after a particle—wall collision is less than $10^{-5} \ m/s$).
- 2. The particle residence time inside the cyclone exceeds a given maximum residence time and the final particle location is inside the particle settling chamber.

"Relaxed" criterion:

A particle is assumed to be separated in the cyclone, if:

- 1. The particle sticks to the wall of the cyclone (that means the wall normal velocity of the particle after a particle—wall collision is less than $10^{-5} \ m/s$).
- 2. The particle trajectory reaches the inlet of the particle settling chamber.

Investigation of Particle Separation in Symmetrical Double Cyclone Separators

Th. Frank*, J. Schneider**, Q. Yu*, E. Wassen*

* Chemnitz University of Technology / ** FH Flensburg, Germany

