The Eulerian-Lagrangian approach Mistral/PartFlow-3D — II

Characteristics of the numerical approach PartFlow-3D:

- 3-dimensional Lagrangian approach for the disperse phase
- equation of motion includes drag force, lift force due to fluid velocity shear (Saffman force), gravity and added mass force
- Magnus force has been neglected due to the very small particle sizes
- Lagrangian stochastic-deterministic turbulence model (LSD or discret eddy model) as proposed by Sommerfeld, Schönung, Milojević
- combination of irregular bouncing model of Frank (1991) and Sommerfeld (1992) virtual wall model based on real wall roughness parameters
- wall erosion prediction based on erosion intensity functions experimentally predicted e.g. by Grant & Tabakoff / Elfeki (1975, 1987)
- neglect of two-way coupling source terms with respect to the assumed low particle concentrations

Parallelization of Mistral/PartFlow-3D:

- parallelization of the numerical approach using Domain Decomposition method
- variable assignment of grid blocks and processor nodes
- support of PVM and MPI message passing standards
- use of Linux clusters (e.g. 4 Siemens Celsius 630 with Dual Pentium III Xeon 550 Mhz) and high performance computing architectures (e.g. Cray T3E, etc.)

Investigation of Particle Separation in Symmetrical Double Cyclone Separators

Th. Frank*, J. Schneider**, Q. Yu*, E. Wassen*

* Chemnitz University of Technology / ** FH Flensburg, Germany

