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1 The Parallel Algorithm for Fluid Flow Cal-
culation

The parallelization of the solution algorithm for the set
of continuity, Navier–Stokes and turbulence model equa-
tions is carried out by parallelization in space, that means
by application of the domain decomposition or grid parti-
tioning method. Using a block-structured grid the flow do-
main is partitioned in a number of subdomains. Usually the
number of grid blocks exceeds the number of processors,
so that each processor of the parallel machine (PM) has to
handle a few blocks. The grid-block-to-processor assign-
ment is given by a heuristicaly determined block–processor
allocation table and remains static and unchanged over the
time of fluid flow calculation process.

The gas flow calculation is then performed by individual
processor nodes on the grid partitions stored in their local
memory. Flow characteristics along the grid block bound-
aries which are common to two different nodes have to be
exchanged during the solution process by inter–processor
communication. Details of the parallel solution method for
the gas flow can be found in [1].

2 Parallel Algorithms for the Lagrangian
Approach

The prediction of the motion of the disperse phase is car-
ried out by the application of the Lagrangian approach as
described in references 5-9 in [1]. Considering the paral-
lelization of this algorithm there are two important issues.
The first is that in general particle trajectories are not uni-
formly distributed in the flow domain even if there is a
uniform distribution at the inflow cross–section. Therefore
the distribution of the numerical work load in space is not
known at the beginning of the computation. As a second
characteristic parallel solution algorithms for the particle
equations of motion have to deal with the global data de-
pendence between the distributed storage of fluid flow data
and the local data requirements for particle trajectory calcu-

lation. A parallel Lagrangian solution algorithm has either
to provide all fluid flow data necessary for the calculation
of a certain particle trajectory segment in the local mem-
ory of the processor node or the fluid flow data have to be
delivered from other processor nodes at the moment when
they are required. Considering these issues the following
parallelization methods have been developed:

2.1 Static Domain Decomposition (SDD) Method

In the first approach geometry and fluid flow data are
staticly distributed over the processor nodes of the PM in
accordance with the block–processor allocation table as al-
ready used in the fluid flow field calculation of the Navier–
Stokes solver.

Further an explicit host–node process scheme is estab-
lished. The trajectory calculation is done by the node pro-
cesses whereas a host process carries out only management
tasks. The node processes are identical to those that do the
flow field calculation. Now the basic principle of the SDD
method is that in a node process only those trajectory seg-
ments are calculated that cross the grid partition(s) assigned
to this process.

An advantage of the SDD method is that it is easy to
implement and uses the same data distribution over the pro-
cessor nodes as the flow solver. But poor load balancing can
be a serious disadvantage of this method, e.g. due to large
differences in the particle concentration distribution inthe
flow.

2.2 Dynamic Domain Decomposition (DDD) Method

This method has been developed to overcome the disad-
vantages of the SDD method concerning the balancing of
the computational work load. In the DDD method there ex-
ist three classes of processes: the host, the servicing nodes
and the calculating nodes (Figure 1).

Just as in the SDD method the host process distributes
the particle initial conditions among the calculating nodes
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Figure 1. DDD method for Lagrangian solver.

and collects the particle’s state when the trajectory segment
calculation has been finished. The new class of servicing
nodes uses the already known block-processor assignment
table from the Navier–Stokes solver for storage of grid and
fluid flow data. But in contrast to the SDD method they do
not perform trajectory calculations but delegate that taskto
the class of calculating nodes. So the work of the servicing
nodes is restricted to the management of the geometry, fluid
flow and particle flow data in the data structure prescribed
by the block-processor assignment table. On request a ser-
vicing node is able to dynamically retrieve or store data
from/to the grid partition data structure stored in its local
memory.

The calculating nodes are performing the real work on
particle trajectory calculation. These nodes receive the par-
ticle initial conditions from the host and predict particlemo-
tion on an arbitrary grid partition. In contrast to the SDD
method there is no fixed block-processor assignment table
for the calculating nodes. Starting with an empty memory
structure the calculating nodes are able to obtain dynami-
cally geometry and fluid flow data for an arbitrary grid par-
tition from the corresponding servicing node managing this
part of the numerical grid. The correlation between the re-
quired data and the corresponding servicing node can be
looked up from the block-processor assignment table. Once
geometry and fluid flow data for a certain grid partition has
been retrieved by the calculating node, this information is
locally stored in a pipeline with a history of a certain depth.
So the concept of the DDD method makes it possible to
perform calculation of a certain trajectory segment on an

arbitrary calculating node process and to compute different
trajectories on one grid partition at the same time by dif-
ferent calculating node processes, thus establishing a nearly
perfect load balancing between processors of the PM.
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Figure 2. Comparison for test case 1.

3 Results and Discussion

Two different test cases has been investigated. Figure
2 shows a comparison of performance results for the cal-
culation of a moderately separated gas–particle flow in a
multiple bended channel with corner vanes. Calculations
were performed on a Linux cluster of 12 AMD-Athlon-PC’s
under LAM–MPI (TU Chemnitz) and on a Cray–T3E with
64 PE’s (TU Dresden). Results for the large 528 processor
Linux cluster of the TU Chemnitz will be available on the
CLUSTER 2000 conference and on the Web [2].

The obtained results show besides the general applicabil-
ity of the SDD and DDD parallelization methods to paral-
lel MIMD computers the importance of homogenous work
load distribution, which has to be treated differently in com-
parison with SDD methods for common computations in the
field of computational fluid dynamics (CFD). With the pre-
sented DDD method remarkable speed–up can be achieved
for the Eulerian–Lagrangian prediction of disperse multi-
phase flows on MIMD computers and clusters of worksta-
tions. The developed parallelization method with dynamic
work load balancing offers new perspectives for the compu-
tation of strongly coupled multiphase flows with complex
phase interactions and higher particle concentrations.
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