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ABSTRACT
This paper deals with the numerical simulation of two–phase

flows based on the solution of the Navier–Stokes equations with
a k� ε turbulence model for the gas phase and a particle track-
ing model of the disperse phase fulfilling the framework of the
Eulerian–Lagrangian (PSI–Cell) approach. The numerical pro-
cedures for the two phases are based on the domain decompo-
sition method applied to a block–structured grid. The complete
code is parallelized for computers of MIMD architecture. The
paper gives a description of the numerical methods with special
attention to the parallelization. Some test calculations demon-
strate the performance of the code. The numerical simulation of
a flow splitter from the area of power engineering is presented as
an example for a real world application of the method.

1 INTRODUCTION
Disperse multiphase flows are very common for processes

in mechanical and thermal process technology (e.g. gas–particle
or gas–droplet flows, coal combustion, pneumatical conveying,
erosion phenomena). Furthermore processes for the separation
of solid particles from gases or fluids and for the classification
and particle size analysis are an important field of interest in pro-
cess technology.
The numerical simulation of multiphase flows includes both the
calculation of the continuous phase and the calculation of a high
number of particle traces as a basis for deriving statistical quan-
tities as particle concentration, mean particle velocity etc. As a

first step the continuous phase can be calculated independently of
the disperse phase, later the interaction with the disperse phase is
to be included in the right hand side of the equations of motion
in an iterative way. For the disperse phase the authors apply
the Lagrangian (PSI–Cell) approach, i.e. discrete particle trajec-
tories are calculated. Each calculated particle represents a large
number of physical particles with the same physical properties.
Even a unique calculation of the continuous phase followed
by the calculation of the disperse phase can be very time-
consuming. More than ever the iterative coupling of the two
phases demands clearly the use of parallel computation. In con-
trast to a strong activity in developing efficient parallel codes for
flow calculation there are only few publications on particle track-
ing by the Lagrangian method on parallel computer systems.
All methods known to the authors suffer from a restricted par-
allelism by using the shared memory concept (Tysinger, 1997)
resp. copying the complete flow field to all processors of the par-
allel machine (Yonemura, 1993), (Tsuji, 1996) or from the risk of
a low parallel efficiency on massive parallel computers of MIMD
architecture, resulting from a naive static domain decomposition
(Byrde, 1999).

Section 2 gives a short description of the physical and
mathematical background for calculating the fluid and particle
phases.

Sections 3 and 4 explain the solving methods and paral-
lelization strategies. For the calculation of the disperse phase
two parallelization strategies are presented. The first algorithm
applies a static assignment of grid partitions to the processors of
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the parallel machine (SDD – Static Domain Decomposition). As
our results show, the parallel efficiency of such a parallelization
method can be dramatically deteriorated. In the second paral-
lelization method – the so–called Dynamic Domain Decomposi-
tion (DDD) – a dynamic assignment of grid and fluid flow infor-
mation to processor nodes is used, leading to a considerably in-
creased parallel efficiency and a higher degree of flexibility in the
application of the computational method to different flow condi-
tions.

Section 5 presents numerical experiments concerning the
performance of the code and focused on parallel efficiency. Most
of the calculations have been performed on parts of the Chem-
nitz Linux Cluster (CLiC) consisting of 528 Intel Pentium III
800MHz processors and a FastEthernet network.

In section 6 the direct Eulerian–Lagrangian approach is ap-
plied to a flow in the area of power engineering. The appliance
which is investigated numerically is a flow splitter with complex
interior guiding vanes called bifurcator. It is used for pneumat-
ical transport of coal particles and the split of the overall coal
particle mass flow rate from the coal mills to the burners of a
coal–fired power plant.
The results show an efficient operation of our code and give a
deeper understanding of the flow structure in the bifurcator.

2 PHYSICAL AND MATHEMATICAL FUNDAMENTALS

2.1 Basic Equations of Fluid Motion

The fluid phase considered here is assumed to be Newtonian
and to have constant physical properties. The fluid flow is 3–
dimensional, steady, incompressible, turbulent and isothermal.
Fluid turbulence is modelled using the standard k–ε model and
neglecting the influence of particle motion on fluid turbulence.
Under these assumptions the time–averaged equations describing
the motion of the fluid phase are given by the following form of
the general transport equation

∂
∂x j

�
ρF uF

j Φ
�
�

∂
∂x j

�
Γ

∂Φ
∂x j

�
= SF +SP: (1)

Here Φ is a general variable, Γ a diffusion coefficient, SF a gen-
eral source term and SP the source term due to momentum ex-
change between the fluid and the particle phase. The variables
uF

1 , uF
2 and uF

3 represent the fluid velocity components, k is the
turbulent kinetic energy and ε the rate of dissipation of k. Gener-
ally index F indicates Fluid and P indicates Particle. A detailed
description of all terms and their correlations is shown in Table 1.
In this table ρF is the fluid density and µ is the laminar viscosity.

Table 1. FLOW VARIABLES, TRANSPORT COEFFICIENTS AND

SOURCE TERMS FOR THE BASIC EQUATIONS
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cµ=0:09; cε1 =1:44; cε2 =1:92; σk=1:0; σε=1:3

2.2 Equations of Motion of the Disperse Phase
The disperse phase is treated by the application of the La-

grangian (PSI–Cell) approach, i.e. discrete particle trajectories
are calculated. Each calculated particle represents a large num-
ber of physical particles of the same physical properties. This
is achieved by a particle number flow rate ṄP prescribed to each
calculated trajectory. The prediction of the particle trajectories is
carried out by solving the ordinary differential equations for the
particle location and velocities. Assuming that the ratio of fluid
density to particle density is small (ρF=ρP � 1) these equations
read

d
dt
xP = uP; (2)

d
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3
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where the rotation of the particle can be calculated from the fol-
lowing equation

d
dt
!=�

15
16π

ρF

ρP
ωrel ξm(Reω) (!�
) : (4)

In these equations ν is the fluid kinematic viscosity, dP the parti-
cle diameter and ωrel the absolute value of the relative rotational
velocity between fluid and particle. The terms on the right hand
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side of (3) represent the drag force exerted on the particle by the
fluid, the lift force due to particle rotation (Magnus force), the
lift force due to fluid velocity shear (Saffman force), the gravi-
tational and added mass forces respectively. The values for the
coefficients CD, CA, CM and ξm can be found in (Frank, 1992),
(Sommerfeld, 1996). Inter–particle collisions are described by
collision probability models due to Oesterle (Fohanno, 2000) and
(Sommerfeld, 1999). Particle–wall interaction was modeled ac-
cording to the virtual–wall model by Sommerfeld (Sommerfeld,
1992) in the modified wall roughness formulation of Frank et al.
(Frank 1997a). The effect of fluid turbulence on the motion
of the disperse phase is modelled by the Lagrangian Stochastic–
Deterministic (LSD) turbulence model. The particle's influence
on the fluid phase is modelled by the PSI–Cell (Particle–Source–
In–Cell) method proposed by (Crowe, 1998). A more detailed
description of all particular models involved in the Lagrangian
particle trajectory calculation can be found in (Frank, 1999a),
(Frank, 2000), (Sommerfeld, 1996), (Crowe, 1998).

3 SOLUTION ALGORITHM
For the numerical solution of the equations described in

the preceding- section the physical space has to be discretized.
Therefore a boundary–fitted, non–orthogonal numerical grid is
used. The grid is block–structured and consists of hexahedral
cells. The equations of fluid motion (1) are numerically solved
on the basis of a collocated, finite volume discretization. The
SIMPLE method with convergence acceleration by the multigrid
technique method is applied, see (Bernert, 2000). When a con-
verged solution for the fluid flow field has been calculated, the
prediction of the particle motion is carried out. Therefore Eq.'s
(3) and (4) are solved by using a standard 4th order Runge–Kutta
scheme. In case of two–way–coupled multiphase flow systems
the source terms SP according to the PSI–Cell method are pre-
dicted simultaneously during trajectory calculation. After all par-
ticle trajectories are calculated the source terms are included in
the fluid momentum equations and a new solution for the fluid
flow field is computed. In the case of neglectable phase interac-
tion (so–called one–way–coupling) a single iteration step is suf-
ficient to obtain the solution for the fluid and particle motion.
The iterative algorithm for the numerical simulation of the cou-
pled two–phase flow can be summarized as follows:

1. calculation of a first solution for the fluid flow field without
taking the source terms of the disperse phase SP into account

2. tracing a large number of particles through the flow field and
computing the source terms SP simultaneously

3. recalculation of the fluid flow field including the source
terms SP of the disperse phase

4. repeating Steps 2 and 3 until the solution of the coupled
equations has converged.
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Figure 1. DOMAIN DECOMPOSITION FOR THE NUMERICAL GRID

4 PARALLELIZATION METHODS
4.1 Parallel Algorithm for Fluid Flow Calculation

The parallelization of the solution algorithm for the set of
continuity, Navier–Stokes and turbulence model equations is
carried out by the domain decomposition or grid partitioning
method. Using the block structure of the numerical grid the
flow domain is partitioned into a number of subdomains (Fig-
ure 1). Usually the number of grid blocks exceeds the number of
processors, so that each processor of the parallel machine (PM)
has to handle a few blocks. The grid–block–to–processor as-
signment is given by a heuristically determined block–processor
allocation table and remains static and unchanged over the time
of fluid flow calculation process. Fluid flow calculation is then
performed by individual processor nodes on the grid partitions
stored in their local memory. Flow characteristics along the grid
block boundaries which are common to two different nodes have
to be exchanged during the solution process by inter–processor
communication, while the data exchange on common faces of
neighbouring grid partitions assigned to the same processor node
can be handled locally in memory.

4.2 Parallel Algorithms for the Lagrangian Approach
The prediction of the motion of the disperse phase is carried

out by the application of the Lagrangian approach as described
in Section 2.2. In the following we consider two parallelization
strategies. The Static Domain Decomposition (SDD) method is
the most obvious and simplest one. It calculates all trajectory
segments at the processors, where the fluid flow data are available
from the flow calculation step. The method is easy to implement
but can lead to poor load balancing, because the effort for calcu-
lating particle trajectories in general is not uniformly distributed
in the flow domain even if there is a uniform particle distribution
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Figure 2. STATIC DOMAIN DECOMPOSITION (SDD) METHOD FOR

THE LAGRANGIAN SOLVER

at the inlet. An efficient parallelization of Lagrangian solution al-
gorithm has to take into consideration that the distribution of the
work load is not known a priori. The Dynamic Domain Decom-
position (DDD) method points out how this can be achieved by a
more flexible concept for calculating particle trajectory segments
including grid and flow data provision.

Method 1: Static Domain Decomposition Method

The first approach in parallelization of Lagrangian particle tra-
jectory calculations is the application of the same parallelization
scheme as for the fluid flow calculation to the Lagrangian solver
as well. In this approach geometry and fluid flow data are dis-
tributed over the processor nodes of the PM in accordance with
the block–processor allocation table as already used in the fluid
flow field calculation of the Navier–Stokes solver. Furthermore
an explicit host–node process scheme is established as illustrated
in Figure 2. The trajectory calculation is done by the node pro-
cesses whereas the host process carries out only management
tasks. The node processes are identical to those that do the flow
field calculation. Now the basic principle of the SDD method is
that in a node process only those trajectory segments are calcu-
lated that cross the grid partition(s) assigned to this process. The
particle state (location, velocity, diameter, ...) at the entry point
to the current grid partition is sent by the host to the node pro-
cess. The entry point can either be at an inflow cross section or at
a common face/boundary to a neighbouring partition. After the
computation of the trajectory segment on the current grid parti-
tion is finished, the particle state at the exit point (outlet cross
section or partition boundary) is sent back to the host. If the exit
point is located at the interface of two grid partitions, the host
sends the particle state to the process related to the neighbouring
grid partition for continuing trajectory computation. This redis-

tribution of particle state conditions is repeatedly carried out by
the host until all particle trajectories have satisfied certain break
condition (e.g. an outlet cross section is reached). During the
particle trajectory calculation process the source terms for mo-
mentum exchange between the two phases are calculated locally
on the processor nodes 1; : : : ;N from where they can be passed
to the Navier–Stokes solver without further processing.

Poor load balancing can be a serious disadvantage of the
SDD method, as shown later for the presented test cases. Rea-
sons for this behavior can be:

1. Unequal processing power of the calculating nodes, e.g. in a
heterogeneous workstation cluster.

2. Differences in particle concentration distribution throughout
the flow domain. Situations of poor load balancing can oc-
cur e.g. for flows around free jets/nozzles, in recirculating
or highly separated flows where most of the numerical effort
has to be performed by a small subset of all processor nodes
used.

3. Multiple particle–wall collisions. Highly frequent particle–
wall collisions occur especially on curved walls where the
particles are brought in contact with the wall by the fluid
flow multiple times. This results in a higher work load for
the corresponding processor node due to the reduction of the
integration time step and the extra effort for detection and
calculation of the particle–wall collision itself.

4. Flow regions of high fluid velocity gradients/small fluid tur-
bulence time scale. This leads to a reduction of the integra-
tion time step for the Lagrangian approach in order to pre-
serve accuracy of the calculation and therefore to a higher
work load for the corresponding processor node.

Method 2: Dynamic Domain Decomposition Method

This method has been developed to overcome the disadvantages
of the SDD method concerning the balancing of the computa-
tional work load. In the DDD method there exist three classes
of processes: the host, the servicing nodes and the calculating
nodes (Figure 3). Just as in the SDD method the host process
distributes the particle initial conditions among the calculating
nodes and collects the particle's state when the trajectory seg-
ment calculation has been finished. The new class of servicing
nodes uses the already known block–processor assignment table
from the Navier–Stokes solver for storage of grid and fluid flow
data. But in contrast to the SDD method they do not perform
trajectory calculations but delegate that task to the class of cal-
culating nodes. So the work of the servicing nodes is restricted
to the management of the geometry, fluid flow and particle flow
data in the data structure prescribed by the block–processor as-
signment table. On request a servicing node is able to retrieve
or store data from/to the grid partition data structure stored in its
local memory.
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Figure 3. DYNAMIC DOMAIN DECOMPOSITION (DDD) METHOD

FOR THE LAGRANGIAN SOLVER

The calculating nodes are performing the real work on parti-
cle trajectory calculation. These nodes receive the particle initial
conditions from the host and predict particle motion on an ar-
bitrary grid partition. In contrast to the SDD method there is no
fixed block–processor assignment table for the calculating nodes.
Starting with an empty memory structure the calculating nodes
are able to obtain dynamically geometry and fluid flow data for
an arbitrary grid partition from the corresponding servicing node
managing this part of the numerical grid. The correlation be-
tween the required data and the corresponding servicing node
can be looked up from the block–processor assignment table.
Once geometry and fluid flow data for a certain grid partition
has been retrieved by the calculating node, this information is lo-
cally stored in a pipeline with a history of a certain depth, which
can be limited by an adjustable parameter. It has further to be
mentioned that a servicing node process does not have to be ex-
ecuted on a separate physical processor, since the work load is
quite neglectable. In current MPI implementations the servicing
node process is implemented as separate node process and is ex-
ecuted in parallel to the corresponding calculating node process
on the same physical processor. Furthermore the host process
is also executed on one of the N processors of the PM keeping
the number of used processors constant in comparison with the
Navier–Stokes solver.

Table 2. PARALLEL COMPUTING SYSTEMS

Computer
Platform

CPU Memory
in MB

Network

PC–Cluster 12 AMD/Athlon, 600MHz 12�512 Fast
Ethernet

CLiC 528 Intel P III, 800MHz 528�512 Fast
Ethernet

CRAY–T3E 64 DEC Alpha 21164
300MHz

64�128 GigaRing

5 NUMERICAL EXPERIMENTS
5.1 MIMD Computer Architectures and MPI Imple-

mentations
The different parallelization methods are based on the

paradigm of a MIMD computer architecture with explicit mes-
sage passing between the node processes of the PM. The imple-
mentation uses an encapsulated communication layer which can
operate on top of standard MPI or PVM communication libraries
(the latter from historical reasons). Usable communication li-
braries have to be in compliance with MPI 1.1 or PVM 3.2 stan-
dard.
Investigations presented in this paper were carried out on three
different computer architectures. Most of the calculations have
been performed on an AMD/Athlon PC cluster or on the Chem-
nitz Linux Cluster CLiC. For performance comparison we used
the CRAY–T3E at the Dresden University of Technology. Table 2
summarizes the most important properties of the three computer
systems. The calculations on the PC clusters were performed
with MPI distributions of MPICH 1.2.0 and LAM–MPI 6.3.2.
On the CRAY we used the Message Passing Toolkit MPT 1.2.1.0
containing MPI and PVM message passing libraries.

5.2 Description of the Test Cases
Two test cases are investigated. The first test case is a dilute

gas–particle flow in a three times bended channel with square
cross section of 0:2�0:2m2. In all three channel bends 4 corner
vanes are installed, dividing the cross section of the bend in 5
separate corner sections (see Figure 4). The vanes are modelled
as infinitely thin solid walls within the flow region (non slip con-
dition). The duct has been subdivided into 64 blocks, the number
of finite volumes for the finest grid is 80�80�496= 3174400;
because of the blades no more than three coarser grids can be
used for the multigrid method. This means that the coarsest grid
with only two cells between the blades has 10�10�62 = 6200
finite control volumes. At the inlet an plug velocity profile with
10:0 m=s is given (ReF = 156000), at the outlet a zero gradient
condition is implemented. The particle phase with particle diam-
eters of dP = 4; : : : ;20 µm and a density of ρP = 2500 kg=m3 has
initially a uniform concentration distribution over the inlet cross

5 Copyright  2001 by ASME



(a)

(b)

Figure 4. FLOW THROUGH A BENDED DUCT: GRID BLOCKS, ABSOLUTE VELOCITY AND TWO PARTICLE TRAJECTORIES,

(a) BENDED DUCT WITH BLADES, (b) BENDED DUCT WITHOUT BLADES

section of the duct. For each of the test case calculations 5000
particle trajectories have been calculated. Similar configurations
are used for e.g. pneumatical conveying of granular material in
channels and pipes.

The second test case differs from the first one by omitting
the vanes in the channel bends. This leads to the development of
a counter clockwise swirling fluid flow and due to the centrifugal
forces acting on the particles to a strong separation of the par-
ticle phase from the fluid flow. Demixing of the particle phase
starts immediately after the first bend and leads to the formation
of a particle rope after the third channel bend. This test case
has been introduced as an example of a strongly separated gas–
particle flow in order to proof the suitability and performance of
the developed load balancing algorithms for such kind of sep-
arated multiphase flows leading to poor parallel efficiency with
the so far used SDD method.

5.3 Results
5.3.1 Flow calculation The first test compares the

convergence of two algorithms which use the multigrid (MG)
method in different way. The first algorithm, denoted as single–
grid method, is the common SIMPLE method where only the
pressure calculation is accelerated with the MG method. Al-
though this inner MG method leads to a much faster conver-
gence of the iteration for the complete system the dependence

of the number of iterations needed for a prescribed accuracy
on the number of unknowns cannot be overcome in this way.
The second algorithm, denoted as multigrid method, applies the
MG–method to the complete system of equations and uses the
SIMPLE–algorithm as smoothing method and coarse grid solver.
The MG–acceleration for the pressure calculation is used addi-
tionally.

In the test the flow through the bended duct with blades
is calculated on a sequence of refined grids. Figure 5 includes
single–grid runs on four grids (SG1 – SG4) with 10�10� 62
(coarsest grid) up to 80�80�496 finite volumes and multigrid
runs starting on the two finest grids (MG3, MG4). N denotes the
number of SG iterations or MG cycles. The curves show that
the number of iterations for the SG method increases while the
number of MG cycles remains constant if the grid is refined. The
total calculation times are decreased by the multigrid technique
up to 1% of the original SIMPLE method.
By the way the calculations on the four grids pointed out that
the solutions on the finest grid can be considered to be mesh-
independend.

Figure 6 summarizes the parallel efficiency of the MG
method on the CRAY–T3E and on the CLiC for a series of runs
on an increasing number of processors. All calculations are
performed for the bended duct with 64 blocks and 396800 or
3174400 finite volumes on the finest grid. Generally the parallel

6 Copyright  2001 by ASME



1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 100 200 300 400 500
N

lo
g

re
s

u
SG1

SG2

SG3

SG4

MG3

MG4

Figure 5. CONVERGENCE OF THE SINGLE– AND MULTI–GRID

METHOD ON A SEQUENCE OF REFINED GRIDS

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 8 16 24 32 40 48 56 64
Number of Processors

P
ar

al
le

lE
ff

ic
ie

n
cy

CRAY, 40*40*248 cells

CLIC, 80*80*496 cells

CLIC, 40*40*248 cells

Figure 6. PARALLEL EFFICIENCY OF THE MG ALGORITHM ON

CLiC AND ON A CRAY–T3E

efficiency is better for the calculations on the CRAY. This is due
to the faster communication network. Table 3 shows calculation
times T cal and the times needed for data exchange T e for the
runs on the coarser grid. While with a growing number of nodes
the ratio T e/T cal remains constant on the CRAY it grows from
0.42 to 0.8 on the CLiC. The run on the fine grid demonstrates
that on the CLiC the parallel efficiency is fairly good as long as
the number of finite volumes per node is not too small.
More details of the parallelization method and further results for
fluid flow calculation can be found in (Bernert, 2000).

Table 3. CALCULATION TIMES AND DATA EXCHANGE TIMES FOR

AN INCREASING NUMBER OF NODES

Number of nodes 8 16 32 64

CRAY: T cal 1661 863 499 349
T e 396 199 103 80

T e/T cal 0.24 0.23 0.21 0.23
CLiC: T cal 1022 669 449 249

T e 434 400 330 200
T e/T cal 0.42 0.60 0.73 0.80
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Figure 7. PARALLEL EFFICIENCY AND TOTAL CALCULATION TIMES

VS. NUMBER OF PROCESSOR NODES; COMPARISON OF PARAL-

LELIZATION METHODS FOR BOTH TEST CASES

5.3.2 Particle calculation For the test case calcula-
tions the total execution time, calculation time, communication
time and I/O time have been measured for the execution of one
iteration cycle of the Lagrangian solver. This means the calcula-
tion of 5000 particle trajectories. All calculations in this experi-
ments have been carried out on the second finest grid level with
40�40�298= 396:800 CV's.

Figure 7 shows the parallel efficiency and total calculation
times for calculations on both test cases with SDD and DDD
methods vs. the number of processor nodes.
It can be seen from the figure that the DDD method has a clear
advantage over the SDD method. The advantage is less remark-
able for the first test case than for the second one. This is due
to the fact, that the gas–particle flow in the first test case is
quite homogeneous in respect to particle concentration distribu-
tion which leads to a more balanced work load distribution in
the SDD method. So the possible gain in performance with the
DDD method is not as large as for the second test case, where the
gas–particle flow is strongly separated and we can observe par-
ticle roping and sliding of particles along the solid walls of the
channel leading to a much higher amount of numerical work in
certain regions of the flow. Consequently the SDD method shows
a lower efficiency and the highest execution times for the second
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Figure 8. WHOLE RIFFLE BOX

test case due to poor load balancing between the processors of
the PM.

The efficiency of the work load balancing introduced into the
Lagrangian approach by the DDD method is clearly reflected in
the calculation and communication times measured for the pro-
cessors of the PM. We consider two runs for test case 2 on eight
processors (without a figure). In the SDD method two nodes
use the largest amount of calculation time (about 90%) while the
other nodes show up to 80% communication (waiting) time. For
the DDD method the distribution of work load becomes very uni-
form with calculation times of about 90% on all physical proces-
sors. This balanced work load behavior remains unchanged also
for larger numbers of processors and leads to the significantly in-
creased parallel performance in comparison with the traditional
SDD method.
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�����
�����

Figure 9. RIFFLE BOX, LOWER PART

6 NUMERICAL SIMULATION OF THE FLOW IN A
FLOW SPLITTER
As an example we present the application of the method to

a flow in the area of power engineering. The device of inter-
est is a so–called bifurcator which is used in large coal–fired
power plants. This bifurcator is belonging to the very complex
pipework between coal mills and burners that is necessary to en-
sure a preferably uniformly distributed supply of the burners with
pulverized fuel from the coal mills even in the the case when sin-
gle mills will turn out. Because of the complexity, the pipework
consists among other things of a number of bends that cause
the emergency of particle ropes mainly as a result of centrifugal
forces.

These ropes would influence the distribution of the pulver-
ized fuel to the burners in a negative manner. The result of such
an unequal supply of the burners with coal is a lower efficiency
and higher output of pollutants and must be avoided. That's
why special attention is turned to the disintegration of the ropes.
For these purposes the bifurcator contains very complex fixtures
called riffle box (see Figure 8). In detail it consists of a system
of 64 differently inclined channels and directly attached to these
a system of vanes that lead the flux alternating to the both legs
of the bifurcator. If a rope meets the riffle box, it is dispelled
by the chequerboard like system of channels in several parts that
are then distributed uniformly to the both legs because adjacent
channels always lead to different legs.

The investigation of the real object is very difficult because
experiments in a power plant at work are impossible and exper-
iments for a model in original scale would be too expensive due
to the large dimensions of the rope splitting device. Experiments
are realized by A. Aroussi at the University of Nottingham on a
third scale model. In this model it is nearly impossible to build
in the complete fixtures. The walls of the riffle box cannot be
scaled with a third because otherwise they would be unstable
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Figure 10. RIFFLE BOX, LOWER PART, DETAIL

in the streaming, i.e. the vanes would flutter. But walls of the
necessary thickness would block a too big part of the cross sec-
tion. Under these circumstances the numerical simulation plays
an important role for the investigation of the flow. Results of
the experiments for comparison with the numerical data will be
avaialable in the last quarter of 2001.

The construction of a numerical grid is quite difficult be-
cause of the complex structure mainly of the riffle box. First of
all the 64 channels inclined against each other (see detail of the
grid in Figure 9) are a serious problem especially for a structured
grid that consists of hexahedrons (see detail of the grid in Fig-
ure 10). So the grid in this region has to split alternating into
different branches that pass either a left inclined or a right in-
clined channel. To realize this, a thin layer between the sets of
left and right inclined channels is not belonging to the gridded
area and form a thin wall of finite thickness. After the passing
of the channels the grid unites again and must map to the guid-
ing vanes that lead alternating to the left and the right leg of the
bifurcator and form a triangular structure (see detail of the grid
in Figure 11), which is also difficult to grid with hexahedrons. In
this case the triangle is divided into 3 quadrangles. The shape of
these quadrangles is determined by the guiding vanes sitting on
the triangles that lead either to the right as seen in Figure 11 or
(alternating) to the left. The position of the guiding vanes marks
the block boundaries in the interior of the triangle that cause an-
other difficulty. Since the grid is structured, the subdivisions on
the longer (outside of the triangle) edge are to find on the op-
posite edge. That means a considerable contraction of the grid
within these blocks and simultaneously so–called bad angles that
are a general problem in the complex bifurcator geometry.

The result of the grid generation process are grids with about
2 millions of cells depending on the concrete case of application.

����
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Figure 11. RIFFLE BOX, UPPER PART, DETAIL

The examples differ for instance from the form of the incoming
flow region. So the inlet channel geometries had been varied for
different real installation conditions of the bifurcator (straight or
bended inlet; varying inlet channel length).

The computations were performed on a cluster of 12 PC with
Athlon processors running under the operating System LINUX.
The predictions start with an uniformly distributed inlet veloc-
ity of 30 m/s. Because of the lack of qualified experiments (see
above) so far no exact comparison of the results with measure-
ments is possible. The results can only be proved on the plausi-
bility of some characteristic phenomena of the flow as well as on
the compliance of certain integral quantities like the mass flow.
Another possibility is to prove the symmetry of the flow field
in the case of symmetric inlet conditions, because the bifurcator
geometry itself is symmetric.

Results of the computations can be seen in Figures 12 and
13. Figure 12 gives an impression of the complex block struc-
ture especially in the region of the rope splitting riffle box. On
the other hand there are slices through the geometry that show
the contour of the field of the resulting absolute velocity, where
the velocity increases from black to white (black: 0 m/s; white:
36 m/s). Good to observe is the flow through the 64 inclined
channels. The flow through the upper part of the riffle box can
be seen in the highest of the three horizontal planes and shows
the alternating distribution to the left and the right leg of the bi-
furcator. The illustration of the complex flow is completed by the
slice in a plane perpendicular to the others.

In Figure 13 the operation of the riffle box is illustrated by
drawing a number of particle trajectories. The particles were in-
jected in the stream in a cross section that forms a distinct rope,
which would leave the bifurcator completely through one leg in
absence of the riffle box. But the rope is distributed relatively
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Figure 12. SHADED CONTOURS OF THE ABSOLUTE VELOCITY

IN THE BIFURCATOR, (BLACK: 0 m/s; WHITE: 36 m/s)

uniform to both legs due to two effects: First the rope is dis-
persed only under the influence of the turbulent motion in the
flow and therefore enters more than one of the 64 channels. Sec-
ondly the rope is distributed by the riffle box to the both legs,
because a particle is guided through the other leg, when it enters
an adjacent channel even in the case when the rope is situated
very close to one wall (or leg). This situation can be found e.g.
when a bend is close to the inlet of the bifurcator.

In addition to the trajectories in Figure 13 a number of statis-
tical quantities of the particle phase was investigated. For exam-
ple the distribution of the mean particle diameter (Figure 14) and
the particle number density (Figure 15) was predicted by tracking
450�450= 202500 particles through the geometry. To obtain a
non–uniform distribution of the basic flow and the particle phase
in front of the riffle box, a 90 degrees bend is added in the input
region that causes an enrichment of particles on the left side of
the cross–section. Especially the particles of higher diameters
were carried to the left because of their higher mass and the re-
sulting higher inertia (see Figure 14). The principle function of
the bifurcator with the riffle box is good to observe. Although
the particles were to find mostly on the left of the cross-section
in front of the bifurcator, the riffle box makes sure that the parti-

Figure 13. PARTICLE TRAJECTORIES IN THE FLOW SPLITTER

cle mass flow is subdivided nearly uniformly to both legs of the
bifurcator. Also to observe is the function of the guiding vanes
especially in the upper parts of the riffle box. The particles con-
centrate near these vanes due to inertial effects and form certain
ropes (the white areas in Figure 15) that will be redistributed up-
stream over the whole cross-section by turbulence effects.
Even the high number of 202500 particles can not ensure that ev-
ery cell is crossed by at least one particle. The comparison with
a 102400–particle–calculation, however, shows that the chosen
number is completely sufficient to point out the behaviour of
the particle phase. For integral quantities as the mass flow rate
through the outlets still fewer particles give quite reliable results.
For the two outlets of the bifurcator we obtained the particle mass
flow ratios 48.14:51.86 with 22500 particles, 48.93:51.07 with
102400 particles and 48.74:51.26 with 202500 particles.

7 CONCLUSIONS
The paper presents the parallelized code MISTRAL/

PartFlow–3D for the simulation of two–phase flows on comput-
ers of MIMD type. The code includes a multigrid accelerated
SIMPLE method for the fluid phase and two algorithms for the
disperse phase, called Static Domain Decomposition (SDD) and
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Figure 14. DISTRIBUTION OF MEAN PARTICLE DIAMETER,

(BLACK: 4µ m; WHITE: 20µ m)

Dynamic Domain Decomposition (DDD) method. Performance
results are given for two typical test cases. The CFD code and
the DDD method show a fairly good parallel efficiency on a PC
cluster with FastEthernet network.

The suitability of the code for solving real problems from
engineering is demonstrated with the application of the method
to a flow in the field of power engineering. The code is applied
to a quite complex technical component, the so–called bifurcator.
Because of its geometry, the grid that is formed by the discretiza-
tion by a structured grid of hexagons is not ideal with regard to
the demands of the flow solver, but good plausible results are ob-
tained. The function of the riffle box within the bifurcator could
be simulated. Solutions can be presented for the basic gas flow
and for the particle phase.
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