International Conference on Parallel Computing,
ParCo — 2001, 4.-7. September 2001,
Naples, Italy, pp. 1-9.

DYNAMIC LOAD BALANCING FOR LAGRANGIAN
PARTICLE TRACKING ALGORITHMS ON MIMD
CLUSTER COMPUTERS

TH. FRANK, K. BERNERT AND K. PACHLER

Chemnitz University of Technology,
Research Group of Multiphase Flow
Reichenhainer Strafie 70, 09107 Chemnitz, Germany
E-mail: frank@imech.tu—chemnitz.de

This paper deals with the presentation and comparison of two different paralleliza-
tion methods for the Lagrangian (PSI-Cell) approach, a frequently used method
for the numerical prediction of disperse multiphase flows, e.g. dilute gas—particle
and gas—droplet flows. Presented algorithms are based on a modification of Domain
Decomposition method applied to a blockstructured numerical grid, as it is widely
used for the parallel computation of fluid flows. Traditional algorithms apply the
same static assignment of grid partitions to the processors of the parallel machine
(PM) also to the Lagrangian particle trajectory calculation, which can lead to a
dramatic deterioration of parallel efficiency by e.g. non-homogeneous particle con-
centration distribution in the flow. In the newly developed parallelization method
a dynamic assignment of grid and fluid flow information to PM processor nodes
is used. A better load balancing between the processors of the PM can be estab-
lished, leading to considerably increased parallel efficiency and a higher degree of
flexibility in the application of the computational method to different flow condi-
tions. Results of performance evaluations are provided for two typical test cases.
Results obtained on the 528-node Chemnitz Linux Cluster (CLIC) are compared
with those for the Cray T3E.

1 Motivation

Over the last decade the Eulerian-Lagrangian (PSI-Cell) simulation has be-
come an efficient and widely used method for the calculation of various kinds
of 2— and 3-dimensional disperse multiphase flows (e.g. gas—particle flows,
gas—droplet flows) with a large variety of computational very intensive ap-
plications in mechanical and environmental engineering, process technology,
power engineering (e.g. coal combustion) and in the design of internal com-
bustion engines (e.g. fuel injection and combustion). Considering the field of
computational fluid dynamics, the Eulerian-Lagrangian simulation of coupled
multiphase flows with strong interaction between the continuous fluid phase
and the disperse particle phase ranks among the applications with the highest
demand on computational power and system recources. Massively parallel
computers provide the capability for cost—effective calculations of multiphase

parco 2001 frank: submitted to IC Press on July 10, 2001 1

flows. In order to use the architecture of parallel computers efficiently, new
solution algorithms have to be developed. Difficulties arise from the complex
data dependence between the fluid flow calculation and the prediction of par-
ticle motion, and from the generally non—-homogeneous distribution of particle
concentration in the flow field. Direct linkage between local particle concen-
tration in the flow and the numerical work load distribution over the calcu-
lational domain often leads to very poor performance of parallel Lagrangian
solvers operating with a Static Domain Decomposition method. Good work
load balancing and high parallel efficiency for the Lagrangian approach can be
established with the new Dynamic Domain Decomposition method presented
in this paper.

2 The Eulerian—Lagrangian Approach

Due to the limited space it is not possible to give a full description of the
fundamentals of the numerical approach. A detailed description can be found
in 4. The numerical approach consists of a Navier-Stokes solver for the so-
lution of the fluids equations of motion ! and a Lagrangian particle tracking
algorithm (Particle-Source-In-cell method) for the prediction of the motion of
the particulate phase in the fluid flow field (see eq. 1).

d—fP =ip ; mP%ﬁP =Fp+Fy+Fa+Fs ; IP%LDP =-T (1)
A more detailed description of all particular models involved in the Lagrangian
particle trajectory calculation can be found in 3. The equations of fluid mo-
tion are solved on a blockstructured, boundary—fitted, non—orthogonal numer-
ical grid by pressure correction technique of SIMPLE kind (Semi-Implicite
Pressure Linked Equations) with convergence acceleration by a full multigrid
method '. Eq.’s (1) are solved in the Lagrangian part of the numerical sim-
ulation by using a standard 4th order Runge-Kutta scheme. Possible strong
interactions between the two phases due to higher particle concentrations have
to be considered by an alternating iterative solution of the fluid’s and particles
equations of motion taking into account special source terms in the transport
equations for the fluid phase.

3 The Parallelization Methods

3.1 The Parallel Algorithm for Fluid Flow Calculation

The parallelization of the solution algorithm for the set of continuity, Navier—
Stokes and turbulence model equations is carried out by parallelization in

parco 2001 frank: submitted to IC Press on July 10, 2001 2

space, that means by application of the domain decomposition or grid par-
titioning method. Using the block structure of the numerical grid the flow
domain is partitioned in a number of subdomains. Usually the number of
grid blocks exceeds the number of processors, so that each processor of the
PM has to handle a few blocks. If the number of grid blocks resulting from
grid generation is too small for the designated PM or if this grid structure
leads to larger imbalances in the PM due to large differences in the num-
ber of control volumes (CV’s) per computing node a further preprocessing
step enables the recursive division of largest grid blocks along the side of
there largest expansion. The grid-block-to-processor assignment is given by
a heuristicly determined block—processor allocation table and remains static
and unchanged over the time of fluid flow calculation process.

Fluid flow calculation is then performed by individual processor nodes on
the grid partitions stored in their local memory. Fluid flow characteristics
along the grid block boundaries which are common to two different nodes
have to be exchanged during the solution process by inter—processor com-
munication, while the data exchange on common faces of two neighbouring
grid partitions assigned to the same processor node can be handled locally
in memory. More details of the parallelization method and results for its ap-
plication to the Multi—grid accelerated SIMPLE algorithm for turbulent fluid
flow calculation can be found in 1.

Initial particle conditions
forgrid | forgrid | forgrd | , , . | forgrid
block 1 block 2 block 3 block n
Initial particle conditions i L o L E: L
for grid forgrid | forgrid | | forgrid local local local local
block I | block2 | block 3 block n blocks blocks blocks blocks |1
grid data grid data grid data grid data |1
@ M fluid data fluid data fluid data o o o | fluiddata |1
e | fsource terms lsource terms source terms lsource terms |
m
T o mean par- mean par- mean par- mean par-
a r ticle data ticle data ticle data ticle data | |
s PRSI v
k
s
Servicing Servicing o o o o o (Servicing
T Node 1 Node 3 Node N
a
local local local local M
M blocks blocks blocks blocks s
e - Cale. Calc. Cale. N, . 4. . Cale.
& [[[woa ||| [widos widdns
¢ [uid daa fluid data fluid data fluid data
Y lource term source term source termg Source term m Tocal Tocal Jocal local
mean par- mean par- ‘mean par- mean par- m blocks blocks blocks blocks
ticle data ticle data ticle data ticle data @ copy of copy of copy of copy of
. . . y grid and grid and grid and Ve . grid and
T T T fluid data fluid data fluid data fluid data
temporary temporary temporary temporary
source term source term source term source term
and mean and mean and mean and mean
particle datal particle data particle data| particle datal
T T T

Figure 1. SDD and DDD method for the Lagrangian solver.

parco 2001 frank: submitted to IC Press on July 10, 2001

3.2 Parallel Algorithms for the Lagrangian Approach

Considering the parallelization of the Lagrangian particle tracking algorithm
there are two important issues. The first is that in general particle trajectories
are not uniformly distributed in the flow domain even if there is a uniform
distribution at the inflow cross—section. Therefore the distribution of the
numerical work load in space is not known at the beginning of the computa-
tion. As a second characteristic parallel solution algorithms for the particle
equations of motion have to deal with the global data dependence between
the distributed storage of fluid flow data and the local data requirements for
particle trajectory calculation. A parallel Lagrangian solution algorithm has
either to provide all fluid flow data necessary for the calculation of a certain
particle trajectory segment in the local memory of the processor node or the
fluid flow data have to be delivered from other processor nodes at the moment
when they are required. Considering these issues the following parallelization
methods have been developed :

Method 1: Static Domain Decomposition (SDD) Method

The first approach in parallelization of Lagrangian particle trajectory calcu-
lations is the application of the same parallelization scheme as for the fluid
flow calculation to the Lagrangian solver as well. That means a Static Do-
main Decomposition (SDD) method. In this approach geometry and fluid
flow data are distributed over the processor nodes of the PM in accordance
with the block—processor allocation table as already used in the fluid flow field
calculation of the Navier—Stokes solver.

Furthermore an explicit host—node process scheme is established as illus-
trated in Figure 1. The trajectory calculation is done by the node processes
whereas the host process carries out only management tasks. The node pro-
cesses are identical to those that do the flow field calculation. Now the basic
principle of the SDD method is that in a node process only those trajectory
segments are calculated that cross the grid partition(s) assigned to this pro-
cess. The particle state (location, velocity, diameter, ...) at the entry point to
the current grid partition is sent by the host to the node process. The entry
point can either be at an inflow cross section or at a common face/boundary
to a neighbouring partition. After the computation of the trajectory segment
on the current grid partition is finished, the particle state at the exit point
(outlet cross section or partition boundary) is sent back to the host. If the
exit point is located at the interface of two grid partitions, the host sends
the particle state to the process related to the neighbouring grid partition for
continuing trajectory computation. This redistribution of particle state con-
ditions is repeatedly carried out by the host until all particle trajectories have

parco 2001 frank: submitted to IC Press on July 10, 2001 4

satisfied certain break condition (e.g. an outlet cross section is reached). Dur-
ing the particle trajectory calculation process the source terms for momentum
exchange between the two phases are calculated locally on the processor nodes
1,..., N from where they can be passed to the Navier—Stokes solver without
further processing.

An advantage of the domain decomposition approach is that it is easy to
implement and uses the same data distribution over the processor nodes as
the Navier—Stokes solver. But the resulting load balancing can be a serious
disadvantage of this method as shown later for the presented test cases. Poor
load balancing can be caused by different circumstances, as there are :

1. Unequal processing power of the calculating nodes, e.g. in a heterogenous
workstation cluster.

2. Unequal size of the grid blocks of the numerical grid. This results in a
different number of CV’s per processor node and in unequal work load
for the processors.

3. Differences in particle concentration distribution throughout the flow do-
main. Situations of poor load balancing can occur e.g. for flows around
free jets/nozzles, in recirculating or highly separated flows where most of
the numerical effort has to be performed by a small subset of all processor
nodes used.

4. Multiple particle—wall collisions. Highly frequent particle—wall collisions
occur especially on curved walls where the particles are brought in contact
with the wall by the fluid flow multiple times. This results in a higher
work load for the corresponding processor node due to the reduction of
the integration time step and the extra effort for detection/calculation of
the particle—wall collision itself.

5. Flow regions of high fluid velocity gradients/small fluid turbulence time
scale. This leads to a reduction of the integration time step for the
Lagrangian approach in order to preserve accuracy of the calculation and
therefore to a higher work load for the corresponding processor node.

The reasons 1-2 for poor load balancing are common to all domain decomposi-
tion approaches and apply to the parallelization method for the Navier—Stokes
solver as well. But most of the factors 3-5 leading to poor load balancing in
the SDD method cannot be foreseen without prior knowledge about the flow
regime inside the flow domain (e.g. from experimental investigations). There-
fore an adjustment of the numerical grid or the block-processor assignment

parco 2001 frank: submitted to IC Press on July 10, 2001 5

table to meet the load balancing requirements by redistribution of grid cells
or grid partitions inside the PM is almost impossible. The second paralleliza-
tion method shows how to overcome these limitations by introducing a load
balancing algorithm which is effective during run time.

Method 2: Dynamic Domain Decomposition (DDD) Method

This method has been developed to overcome the disadvantages of the SDD
method concerning the balancing of the computational work load. In the
DDD method there exist three classes of processes : the host, the servicing
nodes and the calculating nodes (Figure 1). Just as in the SDD method the
host process distributes the particle initial conditions among the calculating
nodes and collects the particle’s state when the trajectory segment calculation
has been finished. The new class of servicing nodes use the already known
block-processor assignment table from the Navier-Stokes solver for storage
of grid and fluid flow data. But in contrast to the SDD method they do
not performe trajectory calculations but delegate that task to the class of
calculating nodes. So the work of the servicing nodes is restricted to the
management of the geometry, fluid flow and particle flow data in the data
structure prescribed by the block-processor assignment table. On request a
servicing node is able to retrieve or store data from/to the grid partition data
structure stored in its local memory.

The calculating nodes are performing the real work on particle trajectory
calculation. These nodes receive the particle initial conditions from the host
and predict particle motion on an arbitrary grid partition. In contrast to
the SDD method there is no fixed block-processor assignment table for the
calculating nodes. Starting with an empty memory structure the calculating
nodes are able to obtain dynamically geometry and fluid flow data for an
arbitrary grid partition from the corresponding servicing node managing this
part of the numerical grid. The correlation between the required data and the
corresponding servicing node can be looked up from the block-processor as-
signment table. Once geometry and fluid flow data for a certain grid partition
has been retrieved by the calculating node, this information is locally stored in
a pipeline with a history of a certain depth. But since the amount of memory
available to the calculating nodes can be rather limited, the amount of locally
stored grid partition data can be limited by an adjustable parameter. So the
concept of the DDD method makes it possible 1. to perform calculation of
a certain trajectory segment on an arbitrary calculating node process and 2.
to compute different trajectories on one grid partition at the same time by
different calculating node processes.

It has further to be mentioned that a servicing node process does not
have to be executed on a separate physical processor, since the work load is

parco 2001 frank: submitted to IC Press on July 10, 2001 6

quite neglectable. In current MPI implementations the servicing node pro-
cess is implemented as separate node process and is executed in parallel to
the corresponding calculating node process on the same physical processor.
Furthermore the host process is also executed on one of the N processors of
the PM keeping the number of used processors constant in comparison with
the Navier—Stokes solver. But results show that efficiency of calculation can
be effected with some MPI distributions, e.g. such as MPICH 1.2.0. An-
other possible implementation is the execution of a calculating node process
as a thread of the corresponding servicing node process. But this requires
fragile mixed message passing and thread programming and leads to a not
as portable solution as for the pure message passing implementation strictly
based on MPI standards.

16000, 25
4 —— Test Case 1, SDD
140004 —M®—TestCasel,DDD| L .---
—aA—TestCase2,SDD| L L.----ect7T
—H— Test Case 2, DD =R 20

12000+ |

Execution time [s]
o2
=]
o
)
!

0 8 16 24 32 40 48 56 64
Number of Processors

Figure 2. Parallel efficiency vs. number of processor nodes; comparison of parallelization
methods for both test cases.

4 Results and Discussion

Results for the parallel performance of the multigrid-accelerated Navier—
Stokes solver MISTRAL-3D has been recently published.! So we will con-
centrate here on scalability and performance results for the Lagrangian par-
ticle tracking algorithms. Implementations of the SDD and DDD methods
were based on the paradigm of a MIMD computer architecture with explicit
message passing between the node processes of the PM using MPI. For perfor-
mance evaluation we used the Chemnitz Linux Cluster (CLIC) with up to 528
Pentium-III nodes, 0.5 Gb memory per node and a FastEthernet interconnect.

parco 2001 frank: submitted to IC Press on July 10, 2001 7

Speed-up

—=e—CLIC, Pentium-Ill, SDD
—&— Linux-Cluster, AMD-K7, SDD
--<--Cray-T3E, SDD
—=—CLIC, Pentium-Ill, DDD
—&— Linux-Cluster, AMD-K7, DDD
--0--Cray-T3E, DDD

. ;

: :

0 8 16 24 32 40 48 56 64
Number of Processors

Figure 3. Comparison of parallel performace on Chemnitz Linux Cluster vs. Cray T3E.

These data were compared with results obtained on a Cray T3E system with
64 DEC Alpha 21164 processors with 128 Mb node memory.

The first test case is a dilute gas—particle flow in a three times bended
channel with square cross section of 0.2 x 0.2m? and inlet velocities up =
up = 10.0 m/s (Re = 156 000). In all three channel bends 4 corner vanes are
installed, dividing the cross section of the bend in 5 separate corner sections
and leading to a quite homogeneous particle concentration distribution. This
corner vanes have been omitted for the second test case providing a typical
strongly separated gas—particle flow. The numerical grid has been subdivided
into 64 blocks, the number of finite volumes for the finest grid is 80x80%496 =
3174 400. For each of the test case calculations 5000 particle trajectories have
been calculated by the Lagrangian solver.

Fig. 2 shows the total execution times, and the speed—up values for
calculations on both test cases with SDD and DDD methods vs. the number
of processor nodes. All test case calculations in this experiments had been
carried out on the second finest grid level with 396.800 CV’s. Fig. 2 shows the
remarkable reduction in computation time with both parallelization methods.
It can also be seen from the figure that in all cases the Dynamic Domain
Decomposition (DDD) method has a clear advantage over SDD method.

Further the advantage for the DDD method for the first test case is not
as remarkable as for the second test case. This is due to the fact, that the
gas—particle flow in the first test case is quiet homogeneous in respect to
particle concentration distribution which leads to a more balanced work load
distribution in the SDD method. So the possible gain in performance with

parco 2001 frank: submitted to IC Press on July 10, 2001 8

the DDD method is not as large as for the second test case, where the gas—
particle flow is strongly separated and where we can observe particle roping
and sliding of particles along the solid walls of the channel leading to a much
higher amount of numerical work in certain regions of the flow. Consequently
the SDD method shows a very poor parallel efficiency for the second test case
due to poor load balancing between the processors of the PM (Fig. 2).

Figure 3 shows the comparison of test case calculations between the CLIC,
an AMD-Athlon based workstation cluster and the Cray T3E. The impact of
the Cray high-bandwith-low-latency interconnection network can clearly be
seen from the figure. So the speed—up for the test case calculations on the
Cray increases almost linearly with increasing number of processors up to 32
nodes. On the CLIC we observe minor speed—up values and reach saturation
for more than 32 processor nodes where a further substantial decrease of the
total execution time for the Lagrangian solver could not be achieved.

Acknowledgements

This work was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft — DFG) in the framework of the Collaborative Re-
search Centre SFB-393 under Contract No. SFB 393/D2.

References

1. Bernert K., Frank Th. : ”Multi-Grid Acceleration of a SIMPLE-Based
CFD-Code and Aspects of Parallelization”, IEEE Int. Conference on Cluster
Computing — CLUSTER 2000, Nov. 28.-Dec. 2., 2000, Chemnitz, Germany.

2. Crowe C.T., Sommerfeld M., Tsuji Y. : ”Multiphase Flows with Droplets
and Particles”, CRC Press, 1998.

3. Frank Th., Wassen E. : ”Parallel Efficiency of PVM- and MPI-Implemen-
tations of two Algorithms for the Lagrangian Prediction of Disperse Multiphase
Flows”, JSME Centennial Grand Congress 1997, ISAC ’97 Conference on Ad-
vanced Computing on Multiphase Flow, Tokyo, Japan, July 18-19, 1997.

4. Frank Th. : ”Application of Eulerian-Lagrangian Prediction of Gas-Particle
Flows to Cyclone Separators”, VKI, Von Karman Institute for Fluid Dynamics,
Lecture Series Programme 1999-2000, " Theoretical and Experimental Model-
ing of Particulate Flow”, Bruessels, Belgium, 03.-07. April 2000.

5. Web site of the Research Group on Multiphase Flow, TUC, Germany.
http://www.imech.tu-chemnitz.de/index.html — Index, List of Publications.

parco 2001 frank: submitted to IC Press on July 10, 2001 9

