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This paper deals with the presentation and 
omparison of two di�erent paralleliza-tion methods for the Lagrangian (PSI{Cell) approa
h, a frequently used methodfor the numeri
al predi
tion of disperse multiphase 
ows, e.g. dilute gas{parti
leand gas{droplet 
ows. Presented algorithms are based on a modi�
ation of DomainDe
omposition method applied to a blo
kstru
tured numeri
al grid, as it is widelyused for the parallel 
omputation of 
uid 
ows. Traditional algorithms apply thesame stati
 assignment of grid partitions to the pro
essors of the parallel ma
hine(PM) also to the Lagrangian parti
le traje
tory 
al
ulation, whi
h 
an lead to adramati
 deterioration of parallel eÆ
ien
y by e.g. non-homogeneous parti
le 
on-
entration distribution in the 
ow. In the newly developed parallelization methoda dynami
 assignment of grid and 
uid 
ow information to PM pro
essor nodesis used. A better load balan
ing between the pro
essors of the PM 
an be estab-lished, leading to 
onsiderably in
reased parallel eÆ
ien
y and a higher degree of
exibility in the appli
ation of the 
omputational method to di�erent 
ow 
ondi-tions. Results of performan
e evaluations are provided for two typi
al test 
ases.Results obtained on the 528-node Chemnitz Linux Cluster (CLIC) are 
omparedwith those for the Cray T3E.1 MotivationOver the last de
ade the Eulerian{Lagrangian (PSI{Cell) simulation has be-
ome an eÆ
ient and widely used method for the 
al
ulation of various kindsof 2{ and 3{dimensional disperse multiphase 
ows (e.g. gas{parti
le 
ows,gas{droplet 
ows) with a large variety of 
omputational very intensive ap-pli
ations in me
hani
al and environmental engineering, pro
ess te
hnology,power engineering (e.g. 
oal 
ombustion) and in the design of internal 
om-bustion engines (e.g. fuel inje
tion and 
ombustion). Considering the �eld of
omputational 
uid dynami
s, the Eulerian{Lagrangian simulation of 
oupledmultiphase 
ows with strong intera
tion between the 
ontinuous 
uid phaseand the disperse parti
le phase ranks among the appli
ations with the highestdemand on 
omputational power and system re
our
es. Massively parallel
omputers provide the 
apability for 
ost{e�e
tive 
al
ulations of multiphasepar
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ows. In order to use the ar
hite
ture of parallel 
omputers eÆ
iently, newsolution algorithms have to be developed. DiÆ
ulties arise from the 
omplexdata dependen
e between the 
uid 
ow 
al
ulation and the predi
tion of par-ti
le motion, and from the generally non{homogeneous distribution of parti
le
on
entration in the 
ow �eld. Dire
t linkage between lo
al parti
le 
on
en-tration in the 
ow and the numeri
al work load distribution over the 
al
u-lational domain often leads to very poor performan
e of parallel Lagrangiansolvers operating with a Stati
 Domain De
omposition method. Good workload balan
ing and high parallel eÆ
ien
y for the Lagrangian approa
h 
an beestablished with the new Dynami
 Domain De
omposition method presentedin this paper.2 The Eulerian{Lagrangian Approa
hDue to the limited spa
e it is not possible to give a full des
ription of thefundamentals of the numeri
al approa
h. A detailed des
ription 
an be foundin 4. The numeri
al approa
h 
onsists of a Navier{Stokes solver for the so-lution of the 
uids equations of motion 1 and a Lagrangian parti
le tra
kingalgorithm (Parti
le-Sour
e-In-
ell method) for the predi
tion of the motion ofthe parti
ulate phase in the 
uid 
ow �eld (see eq. 1).ddt~xP = ~uP ; mP ddt~uP = ~FD + ~FM + ~FA + ~FG ; IP ddt~!P = �~T (1)A more detailed des
ription of all parti
ular models involved in the Lagrangianparti
le traje
tory 
al
ulation 
an be found in 3;4. The equations of 
uid mo-tion are solved on a blo
kstru
tured, boundary{�tted, non{orthogonal numer-i
al grid by pressure 
orre
tion te
hnique of SIMPLE kind (Semi{Impli
itePressure Linked Equations) with 
onvergen
e a

eleration by a full multigridmethod 1. Eq.'s (1) are solved in the Lagrangian part of the numeri
al sim-ulation by using a standard 4th order Runge{Kutta s
heme. Possible strongintera
tions between the two phases due to higher parti
le 
on
entrations haveto be 
onsidered by an alternating iterative solution of the 
uid's and parti
lesequations of motion taking into a

ount spe
ial sour
e terms in the transportequations for the 
uid phase.3 The Parallelization Methods3.1 The Parallel Algorithm for Fluid Flow Cal
ulationThe parallelization of the solution algorithm for the set of 
ontinuity, Navier{Stokes and turbulen
e model equations is 
arried out by parallelization inpar
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spa
e, that means by appli
ation of the domain de
omposition or grid par-titioning method. Using the blo
k stru
ture of the numeri
al grid the 
owdomain is partitioned in a number of subdomains. Usually the number ofgrid blo
ks ex
eeds the number of pro
essors, so that ea
h pro
essor of thePM has to handle a few blo
ks. If the number of grid blo
ks resulting fromgrid generation is too small for the designated PM or if this grid stru
tureleads to larger imbalan
es in the PM due to large di�eren
es in the num-ber of 
ontrol volumes (CV's) per 
omputing node a further prepro
essingstep enables the re
ursive division of largest grid blo
ks along the side ofthere largest expansion. The grid-blo
k-to-pro
essor assignment is given bya heuristi
ly determined blo
k{pro
essor allo
ation table and remains stati
and un
hanged over the time of 
uid 
ow 
al
ulation pro
ess.Fluid 
ow 
al
ulation is then performed by individual pro
essor nodes onthe grid partitions stored in their lo
al memory. Fluid 
ow 
hara
teristi
salong the grid blo
k boundaries whi
h are 
ommon to two di�erent nodeshave to be ex
hanged during the solution pro
ess by inter{pro
essor 
om-muni
ation, while the data ex
hange on 
ommon fa
es of two neighbouringgrid partitions assigned to the same pro
essor node 
an be handled lo
allyin memory. More details of the parallelization method and results for its ap-pli
ation to the Multi{grid a

elerated SIMPLE algorithm for turbulent 
uid
ow 
al
ulation 
an be found in 1.
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3.2 Parallel Algorithms for the Lagrangian Approa
hConsidering the parallelization of the Lagrangian parti
le tra
king algorithmthere are two important issues. The �rst is that in general parti
le traje
toriesare not uniformly distributed in the 
ow domain even if there is a uniformdistribution at the in
ow 
ross{se
tion. Therefore the distribution of thenumeri
al work load in spa
e is not known at the beginning of the 
omputa-tion. As a se
ond 
hara
teristi
 parallel solution algorithms for the parti
leequations of motion have to deal with the global data dependen
e betweenthe distributed storage of 
uid 
ow data and the lo
al data requirements forparti
le traje
tory 
al
ulation. A parallel Lagrangian solution algorithm haseither to provide all 
uid 
ow data ne
essary for the 
al
ulation of a 
ertainparti
le traje
tory segment in the lo
al memory of the pro
essor node or the
uid 
ow data have to be delivered from other pro
essor nodes at the momentwhen they are required. Considering these issues the following parallelizationmethods have been developed :Method 1: Stati
 Domain De
omposition (SDD) MethodThe �rst approa
h in parallelization of Lagrangian parti
le traje
tory 
al
u-lations is the appli
ation of the same parallelization s
heme as for the 
uid
ow 
al
ulation to the Lagrangian solver as well. That means a Stati
 Do-main De
omposition (SDD) method. In this approa
h geometry and 
uid
ow data are distributed over the pro
essor nodes of the PM in a

ordan
ewith the blo
k{pro
essor allo
ation table as already used in the 
uid 
ow �eld
al
ulation of the Navier{Stokes solver.Furthermore an expli
it host{node pro
ess s
heme is established as illus-trated in Figure 1. The traje
tory 
al
ulation is done by the node pro
esseswhereas the host pro
ess 
arries out only management tasks. The node pro-
esses are identi
al to those that do the 
ow �eld 
al
ulation. Now the basi
prin
iple of the SDD method is that in a node pro
ess only those traje
torysegments are 
al
ulated that 
ross the grid partition(s) assigned to this pro-
ess. The parti
le state (lo
ation, velo
ity, diameter, ...) at the entry point tothe 
urrent grid partition is sent by the host to the node pro
ess. The entrypoint 
an either be at an in
ow 
ross se
tion or at a 
ommon fa
e/boundaryto a neighbouring partition. After the 
omputation of the traje
tory segmenton the 
urrent grid partition is �nished, the parti
le state at the exit point(outlet 
ross se
tion or partition boundary) is sent ba
k to the host. If theexit point is lo
ated at the interfa
e of two grid partitions, the host sendsthe parti
le state to the pro
ess related to the neighbouring grid partition for
ontinuing traje
tory 
omputation. This redistribution of parti
le state 
on-ditions is repeatedly 
arried out by the host until all parti
le traje
tories havepar
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satis�ed 
ertain break 
ondition (e.g. an outlet 
ross se
tion is rea
hed). Dur-ing the parti
le traje
tory 
al
ulation pro
ess the sour
e terms for momentumex
hange between the two phases are 
al
ulated lo
ally on the pro
essor nodes1; : : : ; N from where they 
an be passed to the Navier{Stokes solver withoutfurther pro
essing.An advantage of the domain de
omposition approa
h is that it is easy toimplement and uses the same data distribution over the pro
essor nodes asthe Navier{Stokes solver. But the resulting load balan
ing 
an be a seriousdisadvantage of this method as shown later for the presented test 
ases. Poorload balan
ing 
an be 
aused by di�erent 
ir
umstan
es, as there are :1. Unequal pro
essing power of the 
al
ulating nodes, e.g. in a heterogenousworkstation 
luster.2. Unequal size of the grid blo
ks of the numeri
al grid. This results in adi�erent number of CV's per pro
essor node and in unequal work loadfor the pro
essors.3. Di�eren
es in parti
le 
on
entration distribution throughout the 
ow do-main. Situations of poor load balan
ing 
an o

ur e.g. for 
ows aroundfree jets/nozzles, in re
ir
ulating or highly separated 
ows where most ofthe numeri
al e�ort has to be performed by a small subset of all pro
essornodes used.4. Multiple parti
le{wall 
ollisions. Highly frequent parti
le{wall 
ollisionso

ur espe
ially on 
urved walls where the parti
les are brought in 
onta
twith the wall by the 
uid 
ow multiple times. This results in a higherwork load for the 
orresponding pro
essor node due to the redu
tion ofthe integration time step and the extra e�ort for dete
tion/
al
ulation ofthe parti
le{wall 
ollision itself.5. Flow regions of high 
uid velo
ity gradients/small 
uid turbulen
e times
ale. This leads to a redu
tion of the integration time step for theLagrangian approa
h in order to preserve a

ura
y of the 
al
ulation andtherefore to a higher work load for the 
orresponding pro
essor node.The reasons 1{2 for poor load balan
ing are 
ommon to all domain de
omposi-tion approa
hes and apply to the parallelization method for the Navier{Stokessolver as well. But most of the fa
tors 3{5 leading to poor load balan
ing inthe SDD method 
annot be foreseen without prior knowledge about the 
owregime inside the 
ow domain (e.g. from experimental investigations). There-fore an adjustment of the numeri
al grid or the blo
k-pro
essor assignmentpar
o_2001_frank: submitted to IC Press on July 10, 2001 5



table to meet the load balan
ing requirements by redistribution of grid 
ellsor grid partitions inside the PM is almost impossible. The se
ond paralleliza-tion method shows how to over
ome these limitations by introdu
ing a loadbalan
ing algorithm whi
h is e�e
tive during run time.Method 2: Dynami
 Domain De
omposition (DDD) MethodThis method has been developed to over
ome the disadvantages of the SDDmethod 
on
erning the balan
ing of the 
omputational work load. In theDDD method there exist three 
lasses of pro
esses : the host, the servi
ingnodes and the 
al
ulating nodes (Figure 1). Just as in the SDD method thehost pro
ess distributes the parti
le initial 
onditions among the 
al
ulatingnodes and 
olle
ts the parti
le's state when the traje
tory segment 
al
ulationhas been �nished. The new 
lass of servi
ing nodes use the already knownblo
k-pro
essor assignment table from the Navier{Stokes solver for storageof grid and 
uid 
ow data. But in 
ontrast to the SDD method they donot performe traje
tory 
al
ulations but delegate that task to the 
lass of
al
ulating nodes. So the work of the servi
ing nodes is restri
ted to themanagement of the geometry, 
uid 
ow and parti
le 
ow data in the datastru
ture pres
ribed by the blo
k-pro
essor assignment table. On request aservi
ing node is able to retrieve or store data from/to the grid partition datastru
ture stored in its lo
al memory.The 
al
ulating nodes are performing the real work on parti
le traje
tory
al
ulation. These nodes re
eive the parti
le initial 
onditions from the hostand predi
t parti
le motion on an arbitrary grid partition. In 
ontrast tothe SDD method there is no �xed blo
k-pro
essor assignment table for the
al
ulating nodes. Starting with an empty memory stru
ture the 
al
ulatingnodes are able to obtain dynami
ally geometry and 
uid 
ow data for anarbitrary grid partition from the 
orresponding servi
ing node managing thispart of the numeri
al grid. The 
orrelation between the required data and the
orresponding servi
ing node 
an be looked up from the blo
k-pro
essor as-signment table. On
e geometry and 
uid 
ow data for a 
ertain grid partitionhas been retrieved by the 
al
ulating node, this information is lo
ally stored ina pipeline with a history of a 
ertain depth. But sin
e the amount of memoryavailable to the 
al
ulating nodes 
an be rather limited, the amount of lo
allystored grid partition data 
an be limited by an adjustable parameter. So the
on
ept of the DDD method makes it possible 1. to perform 
al
ulation ofa 
ertain traje
tory segment on an arbitrary 
al
ulating node pro
ess and 2.to 
ompute di�erent traje
tories on one grid partition at the same time bydi�erent 
al
ulating node pro
esses.It has further to be mentioned that a servi
ing node pro
ess does nothave to be exe
uted on a separate physi
al pro
essor, sin
e the work load ispar
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quite negle
table. In 
urrent MPI implementations the servi
ing node pro-
ess is implemented as separate node pro
ess and is exe
uted in parallel tothe 
orresponding 
al
ulating node pro
ess on the same physi
al pro
essor.Furthermore the host pro
ess is also exe
uted on one of the N pro
essors ofthe PM keeping the number of used pro
essors 
onstant in 
omparison withthe Navier{Stokes solver. But results show that eÆ
ien
y of 
al
ulation 
anbe e�e
ted with some MPI distributions, e.g. su
h as MPICH 1.2.0. An-other possible implementation is the exe
ution of a 
al
ulating node pro
essas a thread of the 
orresponding servi
ing node pro
ess. But this requiresfragile mixed message passing and thread programming and leads to a notas portable solution as for the pure message passing implementation stri
tlybased on MPI standards.
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Figure 2. Parallel eÆ
ien
y vs. number of pro
essor nodes; 
omparison of parallelizationmethods for both test 
ases.4 Results and Dis
ussionResults for the parallel performan
e of the multigrid{a

elerated Navier{Stokes solver MISTRAL-3D has been re
ently published.1 So we will 
on-
entrate here on s
alability and performan
e results for the Lagrangian par-ti
le tra
king algorithms. Implementations of the SDD and DDD methodswere based on the paradigm of a MIMD 
omputer ar
hite
ture with expli
itmessage passing between the node pro
esses of the PM using MPI. For perfor-man
e evaluation we used the Chemnitz Linux Cluster (CLIC) with up to 528Pentium-III nodes, 0.5 Gb memory per node and a FastEthernet inter
onne
t.par
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e on Chemnitz Linux Cluster vs. Cray T3E.These data were 
ompared with results obtained on a Cray T3E system with64 DEC Alpha 21164 pro
essors with 128 Mb node memory.The �rst test 
ase is a dilute gas{parti
le 
ow in a three times bended
hannel with square 
ross se
tion of 0:2 � 0:2m2 and inlet velo
ities uF =uP = 10:0m=s (Re = 156 000). In all three 
hannel bends 4 
orner vanes areinstalled, dividing the 
ross se
tion of the bend in 5 separate 
orner se
tionsand leading to a quite homogeneous parti
le 
on
entration distribution. This
orner vanes have been omitted for the se
ond test 
ase providing a typi
alstrongly separated gas{parti
le 
ow. The numeri
al grid has been subdividedinto 64 blo
ks, the number of �nite volumes for the �nest grid is 80�80�496 =3 174 400. For ea
h of the test 
ase 
al
ulations 5000 parti
le traje
tories havebeen 
al
ulated by the Lagrangian solver.Fig. 2 shows the total exe
ution times, and the speed{up values for
al
ulations on both test 
ases with SDD and DDD methods vs. the numberof pro
essor nodes. All test 
ase 
al
ulations in this experiments had been
arried out on the se
ond �nest grid level with 396.800 CV's. Fig. 2 shows theremarkable redu
tion in 
omputation time with both parallelization methods.It 
an also be seen from the �gure that in all 
ases the Dynami
 DomainDe
omposition (DDD) method has a 
lear advantage over SDD method.Further the advantage for the DDD method for the �rst test 
ase is notas remarkable as for the se
ond test 
ase. This is due to the fa
t, that thegas{parti
le 
ow in the �rst test 
ase is quiet homogeneous in respe
t toparti
le 
on
entration distribution whi
h leads to a more balan
ed work loaddistribution in the SDD method. So the possible gain in performan
e withpar
o_2001_frank: submitted to IC Press on July 10, 2001 8



the DDD method is not as large as for the se
ond test 
ase, where the gas{parti
le 
ow is strongly separated and where we 
an observe parti
le ropingand sliding of parti
les along the solid walls of the 
hannel leading to a mu
hhigher amount of numeri
al work in 
ertain regions of the 
ow. Consequentlythe SDD method shows a very poor parallel eÆ
ien
y for the se
ond test 
asedue to poor load balan
ing between the pro
essors of the PM (Fig. 2).Figure 3 shows the 
omparison of test 
ase 
al
ulations between the CLIC,an AMD{Athlon based workstation 
luster and the Cray T3E. The impa
t ofthe Cray high-bandwith-low-laten
y inter
onne
tion network 
an 
learly beseen from the �gure. So the speed{up for the test 
ase 
al
ulations on theCray in
reases almost linearly with in
reasing number of pro
essors up to 32nodes. On the CLIC we observe minor speed{up values and rea
h saturationfor more than 32 pro
essor nodes where a further substantial de
rease of thetotal exe
ution time for the Lagrangian solver 
ould not be a
hieved.A
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