
Large Eddy Simulation of Turbulent Square

Channel Flow Using a PC-Cluster Architecture

Jordan Denev1, Thomas Frank2, and Klaus Pachler2

1 Technical University of Sofia, Department of Hydroaerodynamics and Hydraulic
Machines, Kliment Ochridski Str. 8, 1756 Sofia, Bulgaria

denev@vmei.acad.bg
2 University of Technology Chemnitz, Department of Technical Thermodynamics,

Research Group of Multiphase Flows, 09107 Chemnitz, Germany
{DrTh.Frank,klaus.pachler}@arcor.de

Abstract. A fully developed square channel flow with a Reynolds num-
ber of Re = 4410 (based on bulk velocity and duct width) has been calcu-
lated using Large Eddy Simulation (LES) technique with the Smagorin-
sky eddy viscosity model. Results for the Prandtl’s secondary motion
which is turbulence-driven show good qualitative picture and are in good
quantitative agreement with values from other authors. Different nume-
rical aspects have been investigated: the size of the numerical grid, the
spatial discretization scheme for convection, the time discretization with
first- and second-order implicit schemes. The accuracy of the results as
well as the resources required for all cases studied are compared and
discussed in detail.

1 Introduction

Continuing developments in numerical methods and in computer hardware al-
low resource-intensive turbulence models like Large Eddy Simulation (LES) to
develop from pure research activities toward a reliable engineering technology.
Such a process requires the use of well-balanced between each other advanced
numerical techniques like parallel algorithms, spatial and temporal numerical
discretization schemes of higher order which beside their better formal accu-
racy should fulfill additional requirements like, e.g., being non-dissipative and
non-dispersive, see [1].

However, when using combinations of advanced numerical techniques the
question of how resource-intensive such techniques are, becomes important. An
investigation of the resources for LES computations was performed by [4] for
the channel flow between two parallel plates. In their investigation the authors
point out that only few systematic investigations about numerical aspects of LES
exist. The reason they see in the large computational requirements for LES.

The present study deals with the required resources for LES on the example
of a square channel flow. This physical problem possesses a quite typical and
sensitive to the numerical modelling secondary flow, which flow was used as a
test of the accuracy for the different numerical aspects studied.
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The present paper describes first details of the numerical method used which
form the necessary basis for the consequent result analysis. Then the focus is set
on aspects like grid resolution, spatial accuracy of convective schemes, temporal
accuracy of implicit time schemes, procedure for averaging of the instantaneous
flow parameters and CPU-time requirements for a parallel algorithm running on
a Linux PC-cluster.

2 The LES Model and the Boundary Conditions

The widely used subgrid model of Smagorinsky has been applied in the present
flow investigation. The Smagorinsky constant has a value 0.1. Reduction of the
subgrid length in the proximity of the channel walls was made using Van–Driest–
damping function [3, 1].

Wall Boundary Conditions. The wall functions of Werner and Wengle [9]
have been implemented and utilized. This approach assumes that the instanta-
neous velocity component which is parallel to the wall coincides in phase/time
with the instantaneous wall shear stress. Thus there is no need in averaging in
time and the value for the wall shear stress is obtained at each time-step without
iterations from the local flow conditions near the wall.

Periodic Boundary Conditions. Periodic boundary conditions were used to
submit the values of the three velocity components and the turbulent viscosity
from the outflow boundary (plane) toward the inlet boundary of the compu-
tational domain. Before submitting the values, the algorithm first corrects the
velocities in the outflow plane so that the continuity equation (and therefore
the global mass flow rate) is satisfied - this is made by using a correction factor
which is constant for all points in this plane. The correction is performed after
each SIMPLE iteration. Such an algorithm guarantees the satisfaction of the
continuity equation without the need for additional algorithmic developments as
those discussed in [1] - e.g. adding a pressure-drop term or using a forcing-term
in the momentum equation along the channel.

3 Details of the Investigation

3.1 The Physical Problem Studied

The fully developed air flow in a square channel with dimensions 0.25× 0.25m
was studied. The length of the channel was 0.6m, or 2.4 times the channel width
(this lenght was found to be sufficiently large by comparison with a case in
which the channel length was 6.0m but further details go beyound the scope of
the present paper). The average velocity trough the cross section (bulk velocity)
was 0.2704m/s which corresponds to a Reynolds number (based on channel
width) of 4410.
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3.2 The Computer Code, the Numerical Grid
and the Parallel Machine

The Mistral/PartFlow–3D code [5, 8] was used for the computations. The code
is based on the finite volume approach, implicit time steps, the SIMPLE algo-
rithm for velocity-pressure coupling and second-order central-differencing scheme
(CDS) for convection. No use was made of a multigrid algorithm in the present
study so that there is additional potential for further increase in efficiency of the
computations.

The rectangular grid used is cell-centered and consists of 144 × 48 × 48 =
331776 points (together with the boundary points the total number becomes
365 000). The grid was equidistant along the length of the channel. In the cross-
section a refined toward the wall symmetrical grid with aspect ratio 1.07 was
used. The numerical grid was separated in 12 numerical blocks (each one con-
sisting of 27 648 points). Each block was computed on a single processor (such
a distribution of the blocks is convenient for exchange of the periodic boundary
conditions - in this case the inlet and the exit planes of the computational do-
main belong each to a single block and therefore only two processors need to
exchange the information).

Investigations presented in this paper have been performed on subclusters of
12 processors of the Chemnitz Linux Cluster CLIC (528 Intel/Pentium III, 800
MHz, 512 MB RAM per node, 2 x FastEthernet), see [10]. The calculations on
the PC clusters were performed with the MPI distribution of LAM–MPI 6.3.5.

The CPU-time for the investigation (93 000 time steps) was 122 hours. The
parallel efficiency achieved was 0.78. On average, 3 iterations of the SIMPLE
algorithm within a time step were performed.

3.3 Time Steps, Averaging Procedure and Temporal Discretization

Initially 3 000 consequently-decreasing time steps were performed in order to
allow the channel flow to obtain a fully-developed state. The time step reached
after the initial iterations was 0.01s real (physical) time; it was kept constant
during the rest of the computations. Thus the CFL number which defines the
relation between the temporal and spatial discretization accuracy was equal to
0.8. This value is similar to the one usually used with explicit time methods, see
e.g. [7].

The averaging process was started after the initial iterations and all mean
and turbulent characteristics of the flow have been obtained after averaging over
90 000 time steps (this is similar to the procedure of [2] where 100 000 time steps
are used).

With the above described time steps the total physical time for averaging
was 900s and for this time the flow forwards 973 channel-widths. The averaging
in the present investigation was done only with respect to time and no use was
made of the homogeneous spatial direction along the channel.

A second order accurate implicit time scheme was used in the investigation.
For the case of uniform time steps the scheme is described by the following
equation:
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A first-order accurate implicit Euler-backward time-scheme is also available in
the code which was used for comparison with the scheme from equation (1), see
the next chapter.

4 Numerical Results and Analysis

First, an investigation was made with the parameters set as described in the
previous section; we will refer it further as case “standard”. Figure 1 (a) shows
the secondary flows of the time-averaged flow in a cross-section of the channel
for this case. Such flow patterns, called “Prandtl’s second kind of secondary
motion”, occur only in turbulent flows of ducts with non-circular cross-sections
and are turbulence-induced, see Breuer and Rodi [2]. The maximum secondary
velocity appears at the diagonal bisector (the right upper corner in the figure)
and its magnitude is exactly 1.50% of the bulk velocity. This value is somewhat
smaller than the value of 2% reported in [2] and the value obtained by DNS in
[6] which equals 1.9%.
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Fig. 1. (a) Secondary flows of the time-averaged flow field in a cross-section of the
channel; (b) Instantaneous velocity vectors in a cross-section of the channel

The secondary motion is much smaller than the turbulent velocity fluctua-
tions in the channel and consequently it can be “detected” only after averaging
over a sufficiently large number of time steps. In order to illustrate this, the
instantaneous velocity vectors in a cross section are plotted in Figure 1 (b). As
it can be seen in the figure, no flows toward the corners are available for this
particular time step. The magnitude of the plotted vectors (calculated from the
velocity components which lie in the plane of the figure) is 14% of the bulk
velocity, i.e. an order of magnitude higher than the averaged secondary motion.
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Despite the fact that the secondary motion is quite small, it influences con-
siderably the mean flow field - this can be seen on Figure 2 (a). The isocontours
of the mean streamwise velocity show a clear deviation toward the corners of
the channel. Beside this, a slight violation of the symmetry is seen on the figure.
This is most likely due to the averaging process - the time for averaging might
be still not sufficient to achieve perfect symmetry even after 90000 time steps.
In order to clarify the effect of averaging on the symmetry of the secondary flow
motion, the picture resulting after averaging over 20000 time steps is shown in
Figure 3 (a).
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Fig. 2. (a) Isocontours of the mean streamwise velocity in a cross-section of the chan-
nel; (b) Secondary flows resulting on a two times coarser along y and z coordinates
grid

In order to clarify the influence of the space discretization scheme for convec-
tion, a separate run was made with a first-order upwind discretization scheme.
The result: no secondary motion was observed at all. The upwind scheme even
damped out the turbulent motion after approx. 4000 iterations and the stream-
wise velocity then exhibits an “laminar” velocity profile (with a maximum of
1.78 times the bulk velocity in the middle of the channel).

The influence of the time discretiztion scheme was also investigated. A first-
order accurate implicit Euler-backward time-scheme was tested for comparison.
The time step for this numerical test was set exactly equal to the time step of
the second-order scheme (0.01s). Again, as in the case of upwind spatial dis-
cretization scheme, no secondary motion was observed at all together with a
“laminarisation” of the flow. A second solution with the first-order time-scheme
was obtained - but now with a 10 times smaller time step, or, 0.001s real time.
We will refer this case as “time 1st ord”. The result from this solution (again
averaging over 90000 time steps) is shown in Figure 3 (b). The maximum magni-
tude of the secondary motion appears in the vertical wall bisector (vertical plane
of symmetry) and is 4.3% of the bulk velocity. The magnitude of the secondary
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Fig. 3. (a) Secondary flows averaged over 20 000 time-steps only (compare with Fig. 1
(a)); (b) Secondary flows with first-order time-scheme and a 10 times smaller time-step

motion in the right upper corner is 2.4% of the bulk velocity. However, as it can
be seen in the figure, the flow patterns are still deviating from symmetry which
means that the time of averaging in this investigated case was not sufficient.

The influence of the grid density was also studied. Figure 2 (b) shows the
results regarding the secondary motion on a two times coarser numerical grid
in the cross section, consisting of (144 × 24 × 24 = 82944) numerical points.
This case is refered as “min cvs”. The observation of the instant values in the
monitoring point during computations show that real turbulent oscillations of
all calculated quantities were present only during about 50% of the time of
the computations (but changing alternatively with periods of “laminarisation”).
Consequently, after averaging, the maximum magnitude of the secondary motion
is quite low - only 0.64% of the bulk velocity. Good symmetry is still not reached
despite that both the time step and the number of iterations for averaging were
the same as for the regular (finer) grid.

Table 1. Comparison of the calculation time for the different cases

case studied SIMPLE iterations calculation relative time parallel efficiency
per time-step time compared to case of the calculations

[approx. average value] [hours] “standard” [%] [-]

standard 3 121.9 100 0.777
min cvs 2 26.7 22 0.812

time 1st ord 2 107.4 88 0.779

Table 1 shows a comparison of the total time for the calculations (CPU-time
+ communication-time) for the investigated cases. As expected, the 4 times
smaller amount of control volumes in case “min cvs” requires approximately 4
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times smaller time for the calculations. The 10 times smaller time step for case
“time 1st ord” leads to a smaller number of iterations per time-step and to a
decrease of the calculation time. However, one should keep in mind that for this
case the physical time for averaging was 10 times smaller, and, as shown above,
the results are much less accurate indicating the need for a greater number of
iterations with a possible further decrease in the chosen time-step.

5 Conclusion

Many numerical aspects for LES of the fully developed square channel flow have
been investigated on an implicit time marching code. Accuracy of all aspects has
been compared in respect to the obtained secondary flow motion. The following
main results are obtained:

– Accuracy of the numerical scheme for convection. The second-order
accurate Central Differencing Scheme showed good agreement for the mag-
nitude of the secondary fluid motion with values from other authors. When
first order Upwind Differencing Scheme (UDS) was used, no secondary flow
was obtained together with a full damping of the turbulent oscillations;

– Accuracy of the time discretization scheme. Second order time-scheme
delivered good results with a time step of 0.01s. Such time step is suitable
also for explicit time marching as for it the CFL number is equal to 0.8.
First order accurate time scheme with the same time step has been found to
behave as poor and nonphysical as the UDS. Even when a 10 times smaller
time step was used, first order implicit Euler-backward time-scheme delivered
less accurate results than the second-order scheme;

– Accuracy of different grid resolutions. Results with a numerical grid
which was two times coarser along the two axis which lie in the cross sec-
tion of the channel showed less accuracy together with a damping of the
turbulence oscillations during approx. 50% of the time. However, secondary
motion was still obtained with this grid and the time of the calculations was
reduced to 22% which means that investigations with only 82944 control
volumes might be used for quick initial testing of LES;

– Accuracy of different time for averaging. Differently long physical time
(or, which is the same - different number of time steps) have been used to
obtain the average values of the velocities and turbulent characteristics of the
flow. Accurate results have been obtained only after a quite long averaging
process - 90000 time steps equal to 900 seconds physical time (for this time
the fluid passes a distance equal to 973 channel-widths).

The resources required on a parallel Linux PC-cluster are presented and
discussed in detail for all studied cases. They present important information
for the reader interested in planning and carrying out similar numerical studies
exploring the power of LES. Computations of the order of 4 till 5 days on a
PC-cluster of 12 computers allow presently LES to be more and more involved
in industrial flow predictions.
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