
Jul-04 Dresden, Germany, 2004 1 ANSYS CFX

Double Averaged Turbulence 
Modelling in Eulerian Multi-

Phase Flows

Alan Burns1, Thomas Frank1, Ian Hamill1 and Jun-Mei Shi2.
1ANSYS CFX and 2FZ-Rossendorf



Jul-04 Dresden, Germany, 2004 2 ANSYS CFX

Physics Of Bubbly Flow
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Multi-Phase Turbulence Phenomena

• Continuous Phase 
Effects On Dispersed 
Phase Turbulence.
– Simplest model for dilute 

dispersed phase 
Reynolds stresses:

• Turbulent Dispersion.
– Migration of dispersed 

phase from regions of 
high to low void fraction.

– Continuous phase eddies 
capture dispersed phase 
particles by action of 
interfacial forces.
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Multi-Phase Turbulence Phenomena

• Dispersed Phase Effects 
On Continuous Phase 

Turbulence.

• Turbulence Enhancement

– Due to shear production in 
wakes behind particles.

• Turbulence Reduction

– Due to transfer of turbulence 
kinetic energy to dispersed 
phase kinetic energy by 
action of interfacial forces.
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Averaging Procedures

• First Average = Phase Average

• Phase indicator function:
• χα(x,t) = 1 if phase α is present, = 0, otherwise.

• Use ensemble-, time- or space-averaging to 

define phase-averaged variables:

– ‘Volume Fraction’:

– Material Density 

– Phase Averaged Transport Variable: 

• Essentially Mass-Weighted Average

αα χ=r

ααα ρχρ r/=

ααα ρρχ /Φ=Φ
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Averaging Procedures:

• Phase averaged Momentum and Continuity. 

• Mαk = interfacial forces

• = Reynolds Stress like terms

• Phase induced turbulence, or full turbulence?

• Some researchers assume this represents full 

turbulence, e.g. Kashiwa et al.

• We assume it represents phase-induced turbulence.
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Averaging Procedures:

• Models for Phase-Induced Turbulence. 

• Sato: Algebraic Eddy Viscosity:

• Kataoka and Serizawa (1989) derived exact transport 

equations for kpi andε pi.

• Term identified for enhanced turbulence production:

• Exact once the terms for interfacial forces are closed. 
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Averaging Procedures

• Second Average = Time or Favre Average.

• Ensemble averaged phase equations are fully 

space and time dependent.

• Hence, may apply a second time- average.

• Shear induced turbulence?

• Favre or Mass Weighted averaging is 

favoured, as it leads to much fewer terms in 

the averaged equations.
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Favre Averaging

• Favre averaging of phase-averaged variables 

is defined as follows:

• For constant density phases, reduces to a 

volume fraction weighted average:

• Favre-averaged and time-averaged quantities 

are related as follows:
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Favre Averaging

• Time- and Favre- averaged velocities are related by:

• is fundamental to turbulent dispersion, as it 

describes how phasic volume fractions are spread out 
by velocity fluctuations. 

• Eddy-viscosity type turbulence models, employ eddy 

diffusivity hypothesis (EDH):

• Turbulent Prandtl number is typically of order unity.
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Favre Averaging

• Time Averaged Continuity Equation

– Includes volume fraction-velocity correlation term.

– Yields additional diffusion term, if we employ the 
eddy diffusivity hypothesis. 

• Favre Averaged Continuity Equation

– No extra terms. 

– A mathematical simplification, not a physical one.
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Turbulent Dispersion Force

• Assume caused by interaction between 
turbulent eddies and inter-phase forces.

• Model using time average of  fluctuating 
part of interphase momentum force. 

• Restrict attention to drag force, assumed 
proportional to slip velocity and interfacial 
area density Aαβ.

• Assume Dαβ approximately constant as 
far as averaging procedure is concerned.
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Favre Averaged Drag Force

• Express the time averaged drag in terms of Favre
averaged velocities.

• Turbulent Dispersion Force (General Form):

• Applicable in this form to flows of arbitrary 
morphology, using arbitrary turbulence models.

• Modeled Form using EDH:
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Polydispersed Multi-Phase Flow

• Algebraic form of area density is known:

• Hence, area density-velocity correlations may be expressed in 
terms of volume fraction-velocity correlations:

• General Form:

• Eddy Diffusivity Hypothesis (EDH):
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Dispersed Two-Phase Flow

• Further simplifications occur for two phases only:

• Modeled EDH form of the turbulent dispersion force 
reduces to a simple volume fraction gradient:
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Comparison With Other Models

• Imperial College Model

– Gosman, Lekakou, Politis, Issa, and Looney, AIChEJ 1992, 
Multidimensional Modeling of Turbulent Two-Phase Flows in Stirred 
Vessels

– Behzadi, Issa, and Rusche (ICMF 2001), Effects of turbulence on 
inter-phase forces in dispersed flow.

• Chalmers University Model

– Ljus (Ph. D. Thesis, 2000), On particle transport and turbulence 
modification in air-particle flows.

– Johansson, Magnesson, Rundqvist and Almstedt (ICMF 2001), Study 
of two gas-particle flows using Eulerian/Eulerian and two-fluid models.

• RPI Models

– Lopez de Bertodano, (Ph. D. Thesis,1992), Turbulent bubbly two-
phase flow in a triangular duct,, RPI, New York, USA 

– Moraga, Larreteguy, Drew, and Lahey (ICMF 2001), Assessment of 
turbulent dispersion models for bubbly flows.
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Imperial College Model

• Idea of modeling turbulence dispersion force by Favre
averaging drag term was first proposed by Gosman et 
al (1992). 

• Behzadi et al (ICMF 2001) also consider lift and virtual 
mass forces, but found them insignificant.

• Equivalent to our model in the dilute limit.

• Hence, validation reported by Gosman et al valid for 
FAD model

0→βr
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Chalmers University Model

• Similar philosophy and derivation to our model. 

• However, requires unconventionally low volume fraction Prandlt
numbers, of order 0.001, to achieve reasonable agreement with 
experiment. 

• Due to minor errors in analysis, confusing time-averaging with 
Favre Averaging.

• Equivalent to our model, if we identify:

• where

• Explains low values of σd1required to match gas-solid flow.
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RPI Models: Lopez de Bertodano

• CTD is a non-dimensional empirical constant. 
– CTD = 0.1 to 0.5 gave reasonable results for medium sized 

bubbles in ellipsoidal particle regime (Lopez de Bertodano et al 

1994a, 1994b).

• However, flow regimes involving small bubbles or small 
solid particles were found to require very different 
values of CTD, up to 500. 

• Revised by Lopez de Bertodano (1999).
– Proposed that CTD be expressed as a function of turbulent 

Stokes number as follows:
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RPI Models: Lopez de Bertodano

• Compare with Favre Averaged Drag (FAD) model for 
dispersed 2-phase flow employing EVH:

• Substitute Eddy Viscosity Formula

• Equivalent to a Lopez de Bertodano model with 
variable empirical constant:

• Strong function of Stokes number, as expected.
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RPI Models: Carrica et al

• Requires dispersed phase volume fractions to obey a turbulent 
diffusion equation in limit where drag + turbulent dispersion 
balances body forces.

• β = 2,…,ND

• Equivalent to FAD+EDH model in the following limits:

– Two Phases Only

– Dilute Dispersed Phase.

• Satisfactory agreement found with DNS data for dilute bubbly 
flows, and for bubbly mixing layer (Moraga et al, ICMF 2001).
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Validation: Bubbly Flow in Vertical Pipe

• Uses Grace Drag Law

• SST turbulence model + Sato eddy viscosity.

• Compares FAD with RPI = constant 

coefficient Lopez de Bertpdano model.
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Liquid-Solid Flow in Mixing Vessel

• Wen Yu drag correlation for dense solids.

• SST turbulence + Sato eddy viscosity.

• Three solid lines are minimum, average and maximum values of CFD 
results, within region ±5mm from the data point. 

• Dimension representative of size of conductivity probe.
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Liquid-Solid Flow in Mixing Vessel

• Particle volume fractions underpredicted, though 

correct trends are predicted.

• Similar results for 710 micron particles.
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Turbulence Modulation

• Turbulence Enhancement.

• Due to turbulence production in wakes behind 
particles.

• Averaged out by first averaging procedure (phase 
averaging).

• Hence, must include in first averaged equations.
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Turbulence Enhancement: Simple Models

• Sato: Treat particle-induced 

and shear-induced turbulence 
separately.

• Algebraic Eddy Viscosity 
model for phase-induced 
turbulence:

• Modifed k-εεεε Models

• Lump particle-induced and 
shear-induced turbulence 
together.

• Add additional production 
terms to shear-induced k-e
equations, e.g. Lee at al
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Turbulence Reduction

• Energy transferred from turbulent eddies to particles 
by acceleration of particles due to drag.

• Turbulence-drag interaction, like dispersion.

• Interaction with shear-induced turbulence, so 

appears as additional source terms in 2nd averaged 
k-equation
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Turbulence Reduction: Simple Model

• Chen-Wood: Consider drag only, and treat Cαβ as constant in 
averaging procedure:

• = velocity covariance

• Sum of sources is negative

• Hence, can only model turbulence reduction.

• Requires model for velocity covariance:

• Chen-Wood: 
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Turbulence Enhancement: 

Proposed Double Averaged Approach

• Treat phase-induced and shear-
induced separately, as in Sato 
model.

• Solve separate transport 
equations for phase-induced 
and shear-induced turbulence.

• k-l model for phase-induced 
turbulence: (Lopez de 
Bertodano et al)

• Choose                                                     

• Matches Sato:

• Choose time-scale τk,pi to match 
Kataoka-Serizawa production:

• Hence, τk,pi proportional to particle 
relaxation time.

• Time Averaged kpi equation 
introduces additional terms involving 
turbulence dispersion force.

• Hence, affected by volume fraction 
gradients.

( ) ( )
pipi

piki

pi

pik

pit

pi

i

pi kk
x

k
kU

x
k

t
,,

,

,

,

,

,,

~
~~

α
ααα

ααααα
τ

ρ

σ

µ
ρρ −=















∂

∂
−

∂

∂
+

∂

∂
∞

pitpipit lkC
,,, αααµα ρµ =

2

,
4

1
αβα UUrk pi

rr
−=∞ βα dl pit ∝

,

( )2

,

,

~

αβαβ

α

τ

ρ
UUC

k

pik

pi
rr

−=
∞

dcpdcpit UUdrC −= ρµ µ,



Jul-04 Dresden, Germany, 2004 30 ANSYS CFX

Turbulence Reduction: 

Proposed Double Average Approach

• As for Chen-Wood, but take area density fluctuations into 
account in averaging procedure.

• Hence, additional source terms in shear-induced k-equation:

• + additional terms

• Additional terms proportional to 

• Hence, also affected by volume fraction gradients.

• Consider better models for velocity covariance, e.g. transport 
equation.
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Conclusions

• Double Averaging Approach yields a natural model for 
turbulence dispersion, with wide degree of universality. 

• Implemented as default model for turbulence dispersion 
in CFX-5.7 (2004). 

• Also produces potentially fruitful approaches to 
turbulence modulation.

• Topics for further investigation:
– How is the model affected by taking into account non-linear 

dependence of drag on slip velocity?

– How is the model affected by taking into account volume 
fraction dependence of the drag coefficient?

– second order closure models.

– separated flows.


