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Abstract. A general framework is presented for the modeling of tertiutlispersion in Eulerian
Multi-Phase Flows. The approach is based on a double averaging peocddilne local instant
equations.

We start with the ensemble averaged equations of Euleriainphake flow. We perform a second
time average of these, in order to form equations which maysée to model turbulent multi-phase
flows. These are conveniently expressed in terms of Favre or Masge/&eiables.

Turbulent dispersion is modeled by performing a time averag@eointerphase drag term in its
modeled form, and expressing it in terms of Favre averageablesi The resulting double averaged
momentum equations contain additional terms which account tobalént dispersion force. We call
the resulting model the Favre Averaged Drag (FAD) model ddoutent dispersion. It is first
presented in a general form which may be used in conjunction mjtRaynolds averaged turbulence
model, and for an arbitrary number of phases with arbitrary morphologies.

For the purposes of this study, we make two further spedializa to poly-dispersed multiphase
flows, and to turbulence models which employ the eddy diffusivipothesis. The resulting model is
compared to several other models that have appeared in thtuliée We show that all are special
cases of the FAD model, within certain physical and matheatdimitations. Hence the FAD model
encompasses all of these models, but has a potentially wider rangeavfalitiy.

The FAD model has been implemented in the commercial CFD pack®(-5, and tested against a
range of dispersed multiphase flows, including bubbly flows in vertical pipesicandi$olid flows in
mixing vessels. The FAD model is shown to yield superior prediction$ ¢as#s.

1. Introduction

The accurate modeling of multi-dimensional turbulent multiphasesfisva challenging task.
Many phenomena occur which need to be accounted for explicitly imdkdeling procedure.
For example:

Turbulent DispersionTurbulence in one phase has a direct effect on the migratidaiaf f
particles in the other phases. For example, in a dispersed mudg-fibe, turbulence in the
continuous phase causes patrticles in the dispersed phase to be ednsportregions of

high concentration to regions of low concentration.

Turbulence Modulation Conversely, the mere presence of dispersed phases within a
continuous phase can affect turbulence within the continuous phase. batigee$ tend to
increase turbulence levels in the continuous phase, due to enhance shedioprodticeir
wakes. However, large concentrations of small particles tendcreas® turbulence in the
continuous phase. See, for example, Crowe (2000).

Buoyancy ProductianLarge mean density gradients are the rule rather than thptiexce
most practical multi-phase flows. Hence, buoyancy effects tulent production should be
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expected to be important. For example, significant damping of turbustrocegd be expected
to occur in stably stratified multi-phase flows.

In this paper, we address the phenomenon of turbulent dispersion. Howevempest the
methods used here to also have significant impact on future modeling of other turbulent mult
phase flow phenomena.

2. Averaging Procedures

Averaging procedures are traditionally used in the modeling of boglegphase turbulent
flows, and multi-phase flows.

2.1 Single Phase Turbulent Flow

Typically, the unaveraged Navier-Stokes equations are timenasamnele-averaged to form
the Reynolds Averaged Navier-Stokes equations. In particular, avgrafjthe non-linear
advection term produces an additional contribution to the momentum flux, knowre as
Reynolds Stress tensor. The equations are closed by providingeclomdels for the
Reynolds stresses. The simplest models employ the eddy tyslegsothesis. More complex
second order closure models solve modeled transport equations for the Reynolds Stresses

For variable density single-phase flows, it turns out to be conveienpress the time- or
ensemble-average equations in terms of Favre or Mass Weiglritahbles. The advantages of
this formulation are:

1. There are no additional terms in the averaged continuity equation.

2. There are fewer terms requiring direct modeling in the momeananother transport
equations.

2.2 Eulerian Multi Phase Flow.

We start with the local instant transport equations which govesrflow of each distinct
phase. These are the time-dependent Navier-Stokes Equations:

2 (012 0 P
a(mk)-*_a_xi(wiuk_rik)_ o, + B, (1)
0 0 B
a(p)-l-a_)g(Wi)_o (2

Here, p, U; denote the local density and velocity fieldgs,denotes the viscous stress tensor,
and P and By denote pressure and volumetric body forces. At any point in spatéime,
only one phase may be present. We denote distinct phases withsBbseriptsx, 3 etc. For
each phase, we define the phase indicator function, or characteristic function:

x,(xt)=1 if phasen is present, x,(x,t)=0 otherwise.

We select an appropriate averaging procedure, namely ensgtithe-or space-averaging,
LN <CD> and we define phase-averaged variables as follows:
r, =(X, )= volume fraction of phase (3)
Py =(X,P)!1,= material density of phase (4)
P, = < )(moCD>/ p, = phase averaged transport variable in plase (5)
Here,® denotes any transported variable, and we notdhlibgithase averaging procedure is a
mass-weighted averaging procedure. Strictly spgakinis only a volume fraction if we are

employing volume averaging. It is a residence tawerage if time averaging, and an average
fraction of occurrence if ensemble averaging.
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Phase averaged equations are derived by multipthi@docal instant equations by the phase
indicator functions, and averaging. Two distingbigaches are predominant in the literature:

1. Take single-phase flow equations in each phaparately, supplemented by interphase
boundary conditions, or jump conditions. See Dr&&3lLfor details.

2. Alternatively, use the local instant equatiorfirced in the whole of space, using the theory
of distributions to permit partial derivatives asdontinuous quantities to be defined. This is
the approach of Kataoka (1986) and Kataoka ana&ea (1989). It is conceptually simpler
in that it does not require detailed accountinqitdrphase boundary conditions.

Both approaches lead to phase averaged equatioals wypically take the form:

0 0 oP

a(rapaum)“La_Xi(ra (ana'ank - (Tm'k + Ty ))) = _raa +r,B + M, (6)
0 0 B
E(rapa) + a_)g(raloaua'i ) =0 (7)

Note thatM , denotes the interfacial forces acting on phasgue to the presence of other
phases. This is traditionally split into severahtiutions from drag force, lift force, virtual
mass force etc. Alsa,, denote Reynolds stress like terms,

thvik = _pd<ui’du’jd> (8)
where u;, denote fluctuating velocity fields relative to thiease average.

2.3 Turbulent Multi Phase Flow.

The phase averaged equations (6) and (7) are glo=ad/ed using an averaging procedure.
Moreover, they contain Reynolds stress like ter@)s Hence, it is not unreasonable to
assume that they provide a complete basis for tbdefimg of turbulent multi-phase flow.
This approach has been followed, for example, bghitea and VanderHeyden (2000).
Kataoka and Serizawa (1989) derived exact transpquations for the phase averaged
turbulent kinetic energy and energy dissipationclvharise in this approach. In particular,
terms may be identified for enhanced turbulencelgecton, which are exact once the terms
for interfacial forces are closed. Attempts hawdleen made to model enhanced turbulence
dissipation based on this approach (Serizawa amtabKa 1990).

However, if the phase averaged equations are deusigensemblaveraging, then they are
fully space and time dependent. Hence, it makesenadtical sense to apply a secadinte-
averagingoperation to the equations, and to use the regulibuble average@quations as
the basis for modeling turbulent multi-phase flowkis approach has also been followed by
many authors, for example, Elghobashi and Abou-At8183), Besnard and Harlow (1988).

It is not obvious to the present authors whichhaf &bove two approaches is more soundly
based physically. We believe it is important to kvout the consequences of both approaches,
and to compare resulting models with experimenpdrticular, we shall see that the double
averaging approach leads to some nice physicalytive models of turbulent multi-phase
phenomena, which we believe are difficult to derfvem the single averaging approach
alone.

Within the double averaging approach, there isréhén choice to be made. Namely, whether
to base the modeled equations on time averaged &awre averaged variables. Experience
with single phase turbulent flow has demonstratesl superiority of the Favre averaged
approach for variable density flows, as it leadsntach fewer higher order correlation terms
which require modeling. As multiphase flows haveclmin common with variable density
single phase flows, we expect the same princippesipply. Elghobashi and Abou-Arab
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(1983) derived time-averaged versions of the plaaseaged equations, including exact
transport equations for turbulent kinetic energy dissipation. These contained 38 and 64
terms respectively. Besnard and Harlow (1988) eygaldhe Favre averaging approach.

2.4 Favre Averaging.
Favre averaging of phase-averaged variables inatkfs follows:

e, =r,p,®, /1,0, 9)

Here, the phase averaged variables are as defiregliations (3), (4) and (5), and the overbar
denotes the time averaging operation. For simpligie consider constant density phases, in
which case Favre averaging reduces to a volumédraweighted average:

a)a = raq)a /C = raq)a :ECT)[I (10)

From this, we deduce a simple relationship betwEawxre-averaged and time-averaged
quantities:

Lo, =)o, +d) = B,=0,+1d 1T, (12)

Here, single dashes denote fluctuating quantitéstive to the time-averaged variable. This
indicates the importance of correlations betweaanttiating volume fractions and fluctuating
variables to relate Favre averaged and time-avdrageables.

In particular, time-averaged and Favre averageaciteds are related by:
U,=U,+7 , 0 =rg,/r, (12)

1=

The quantity,d; is fundamental to turbulent dispersion, as it dbssrhow phasic volume

fractions are spread out by velocity fluctuatioimseddy-viscosity type turbulence models, it
is modeled via the eddy diffusivity hypothesis (EDH

e, = —Ja O (13)

a~a
ra

Here, vy, is the kinematic eddy viscosity of phaseandao,, is the turbulent Prandtl number
for volume fraction dispersion, expected to be rolieo unity.

2.5 Favre Averaged Continuity Equations.
Time averaging the phasic continuity equationgy(vVés:

S 2o it )0 a®

Hence, we have an extra term involving the volunaetion-velocity correlation. This yields
an additional diffusion term if we employ the ediiffusivity hypothesis (13).

However, we may use the relation (10) to expresstithe-averaged continuity equations in
terms of Favre averaged velocities:

—_—

o(_ —\, 0

—\p, 1, |+—\p,r,U.,J=0 15

P o) (15)

In this case, no extra terms appear. This is cflearimathematical simplification, not a
physical one. We shall see in the next section tisg Favre averaging, turbulent dispersion
may be accounted for entirely in the time-averagedentum equations.
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3. Turbulent Dispersion Force

Consider the concrete situation of a turbulent iooimus phase interacting with a dispersed
particulate phase. Particles will tend to get caughin continuous phase turbulent eddies,
and hence be carried from regions of high conctairao regions of low concentration.

The mechanism responsible for particle acceleratdoe to continuous phase velocity
fluctuations is that of interphase momentum tramsféhat is, the interfacial forces
M occurring in the phase averaged momentum equaf®nd-ence, it is reasonable to

assume that turbulent dispersion may be modeletyubie time average of the fluctuating
part of the interphase momentum force. This idea W=t introduced by Gosman et al
(1992), employing the drag component only of th@ltanterfacial force. The paper by
Behzadi et al (2001) subsequently considered thdiadal effects of the lift and virtual mass
forces, but found them not to be significant.

We restrict our attention here to the interphasg dorce. We assume a general model for this
force which is proportional to the slip velocitycathe interfacial area densify:
M, =C,0,-U,)=D,A,U,-U,) (16)
For example, for a dispersed two phase flow invgva continuous phase and dispersed
phaseB, with Sauter mean diamet&s and non-dimensional drag coeffici€®y, we have:
— 3 rﬁpa - 1 — 6rﬁ
C,;=-C ==C 0, : =—£ a7
47" d g o/ P d,
As a first approximation, we assume that the priopaality factorD,z in equation (16) may
be treated as approximately constant as far aavbeaging procedure is concerned. That is,
we only account for velocity fluctuations in thedar slip velocity term, and for volume
fraction fluctuations in the area density term.sTwill be true for dispersed two phase flows

whose drag coefficient obeys Stokes’ law, but @ansapproximation for other drag laws. This
approximation may be relaxed in further work.

u,-u,

U,-u,

B

3.1 Time Averaged Drag For ce

Time average equation (16), taking into accounbaig) fluctuations and area density
fluctuations. We obtain:

M, =D,,(A, 0, -0, )+, -7) (18)

So, in this case, the time-averaged drag term stnef the original unaveraged drag term,
written in terms of time-averaged variables, plus extra term proportional to the area

density-slip-velocity correlationDaB(a;ﬁlU;;—U; )) If modeled using the eddy diffusivity
hypothesis, this is given by:

/. / \ [ V vV D_
D5 8o Uy — ))= _CaﬁL Uw - Jm ] ﬁﬁ (19)
AB Aa Aa,l?

whereoa, andoag are turbulent Prandtl numbers for interfacial ateasity.

3.2 Favre Averaged Drag For ce

We may express the time averaged drag (18) in tefrkavre averaged velocities using the
relation (12). We obtain:

M, =C,(0,-U,)+MP (20)

This contains the original drag force, expressedeirms of Favre averaged velocities,
together with an additional term which is given by:
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Turbulent Dispersion Force (General Form):

- - — (0, rada a tﬁ' —U')
M;°=—M£°=—Caﬁ[ - - J (21)

T P
If using the eddy diffusivity hypothesis (EDH), shmay be closed as follows:

Modeled Form (EDH):

M;D :_M;D :C_Hﬂ Vtﬂ Ij_r'g - Vta |:EU — thg — VIG %ﬂ (22)
Op Ty Oty \Ons On) Ay

It is expected that all turbulent Prandlt numbdasud be of order unity.

3.3 Poly-Dispersed Multi-Phase Flow

Equation (21) expresses the most general formeofFtvre Averaged Drag (FAD) model for
the turbulent dispersion force. It is applicablditet and second moment closure turbulence
models, and to phase pairs of arbitrary morpholde. now wish to restrict attention to
dispersed multi-phase flows, in which case furieplifications are obtained.

Assume throughout that phaseepresents a continuous phase, and that ghasgresents a

dispersed phase of mean diamelgerThen, the interfacial area density is given by:
or
Abﬂ = d_ﬂ (23)
B

Hence, the area density-slip-velocity correlatiomynmbe expressed in terms of volume
fraction-velocity correlations:

a0~ ) _ ;=) o
P s
Consequently, equations (21) and (22) further signfu:

General Form

N N rr—»r r’ Ua
M° =-MP =caﬂ{aT“ﬂ— s } (25)
r, r
Modeled Form (EDH):
. iy =, (Or, O,
MIP=-MTP=C, Via [ _ B _ D_ra] (26)
2

It is interesting to note that all term involvinget dispersed phase eddy viscosity have
cancelled, so the modeled form of the turbulensipation force depends only on the
continuous phase eddy viscosity. This cancellaticcurs due to our inclusion of fluctuating
area density effects.

3.4 Dispersed Two Phase Flow

In the special case of two phases onfy+r, =1, so DE+DE:O. Hence, the modeled
EDH form of the turbulent dispersion force reduttea simple volume fraction gradient:

M =M P = -C,, 2 [i+i]DE (27)
O\ Ty Tp

ra
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4. Comparison with Other Models

In this section, we compare the Favre Averaged OF&D) model with similar models
derived by other authors. We restrict attentionthe model equations (26) and (27) for
dispersed multiphase flows employing the eddy diffity hypothesis. For comparison
purposes, substitute equation (17) into (27) toresg the dispersed 2-phase FAD+EVM
model in terms of non-dimensional drag coefficient:
M;D:—M;D:—ECDM Via [i+i][]a (28)
4 d O\, 1

ra

U, -U

a

In the limit of dilute dispersed two-phase flow, — 0, this is asymptotically equivalent to:

Ni T :_M';D :_ECD M50,
4 d,

U;-U,

Ya gy, (29)
g

ra

4.1 Imperial College M odel

As indicated in section 3, the idea of modeling thebulence dispersion force by Favre
averaging the drag term was first proposed by Gasshal (1992). Following the exposition
in Behzadi et al (2001), the turbulent contributairthe drag force is modeled using:

M;” =By (30)
_3n Py i = =i~ Vi
where B=-C, U,-U,| and ¢; is modeled ast; =—*-0r, . Hence,
4 d, O,,
. . 3. Tafa= =V, O,
M°=-Mp=-=C, 22U, -U,| = — (31)
4 d, O, 1,

This is very similar to, though not identical touatjon (28) for the FAD model. Both have
the same asymptotic limit (29), ag - 0, for dilute dispersed two phase flow.

4.2 Chalmers University Model

Ljus (2000) and Johanssen et al (2001) have deamdd/alidated a similar model to equation
(27) for dispersed two phase flow. However, thewdel requires highly unconventional

volume fraction Prandtl numbers, of order 0.001,atthieve reasonable agreement with
experiment. This is due to minor errors in theialggis, which are clarified here.

Ljus (2000) implicitly uses time-averaging, but lesgs the resulting diffusion term in the
time-averaged continuity equation (14) on the gdsuthat volume fraction variations are
small. Only the additional term from time-averagdrhg, equation (18), is modeled,
employing a model of the form:

D, (L, (G, — )= B.0r, + B0k, (32)
B, =

C,,V

o Y p, =% (33)
r[i‘ Oq1 O

The retention of volume fraction gradients in timstfterm means that their neglect in the

continuity equation is incorrect. However, the moden be salvaged by reinterpreting the

averaging procedure as Favre averaging, and tak@egRHS of (32) as a model for the

fluctuating terms in the Favre Averaged Drag, eigunaf21).

The unconventionally small volume fraction Pramdimbersoy; arise because of the use of
dispersedphase eddy viscosity in the definition @f. This is in contrast with our model
equation (27) which only employs tleentinuousphase eddy viscosity. The Ljus model was
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employed in conjunction with an algebraic modeldmpersed phase eddy viscosity:
V= (34)

O-V,B

Here,o.p is an eddy viscosity Prandtl number, which is niedi@s a function of the ratio of
turbulent Stokes numbeBt = the ratio of particle relaxation tintg and the integral turbulent
time scale;, as follows:

r I,
o=t st="2 p =P ooprke (35)
1+ St T, Cop £,

Hence, comparing the FAD model (27) with the ftesim of the Ljus model (32), we see that
they are equivalent in the limit of sma| provided we make the algebraic identification:

O, =12 (36)

Thus, the parameteyy; in the Ljus model is not the true volume fractPrandtl number. It is
the ratio of the volume fraction Prandtl number #imel eddy viscosity Prandtl number. This
explains the unconventionally low value @f; = 0.001 required to obtain agreement with
experiment. The comparisons with experiment in desan et al (2001) involved large solid
particles in gas, with large relaxation times, drece correspondingly large values of the
eddy viscosity Prandtl numberg.

The second term of the Ljus model involves gradi@ftturbulent kinetic energy. Such terms
are likely to occur in the FAD model if we werettike into account variations Gg which
are linear in slip velocity. This may be a topidature investigations.

4.3 RPI Models

Research workers at Rensselaer Polytechnic Irest{faPl) have developed two volume-
fraction based gradient models for turbulent disioer applied to bubbly two phase flows.
These are both discussed below.

L opez de Bertodano M odel

The original model of Lopez de Bertodano (1992gtathe form:
Mg =-M;° =-Cpp0,k,0r, (37)

Crp is a non-dimensional empirical consta@tp = 0.1 to 0.5 was found to give reasonable
results for medium sized bubbles in the ellipsoftaticle regime (Lopez de Bertodano et al
1994a, 1994b). However, flow regimes involving vesypall bubbles or very small solid
particles were found to require very different el wfCrp, up to 500. Hence, this model was
revised by Lopez de Bertodano (1999), where it pragposed thaCrp be expressed as a
function of turbulent Stokes number as follows:

Cr —_ Cl/4 1
D

- TH S+ St (38)

The 2-phase version of the FAD model (27) may h@essed in the same form as the Lopez
de Bertodano model (37), by substituting the folaniar eddy viscosity,, :Cﬂkjlsainto

(27). We find that the two models are equivalenthwhe adjustable ‘constants’ related as

follows:
C,C C r
Cp=—2 o Ky i+i w1 £ +1 (39)
o Tp 041o,, St 1,
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Hence, the FAD+EVH model for dispersed two-phas& f{(27) is equivalent to a Lopez de
Bertodano model with Stokes number dependent comfti Crp. However, the Stokes
number dependency is not the same as that projydecbez de Bertodano (1998).

Carrica M oddl

The model of Carrica et al (1999) was developedditute poly-dispersed bubbly flow, for
bubbles sufficiently small that the Stokes drag tawld be applied;, =24/Re, . Denoting

the continuous phase loy= 1, and the dispersed phase{3by 2,...ND, the model takes the
form:

r . - —
B ra
MP=->"Mp° (41)
B=2

The Carrica model was evaluated in some detail byalye et al., 2001, 2003. Satisfactory
agreement was found with DNS data for dilute bubldws, and for a bubbly mixing layer.
Moraga et al. also noted the equivalence betwesmtbidel and a variable coefficient Lopez
de Bertodano model.

Comparing the Carrica model equations (40) and yitt) the FAD+EDH model equations
(28) and (29 for 2-phase flow, we see that theyidestical in the limitr, - 0. So the FAD

model reduces to the model of Carrica et al. inddee of 2-phase flow, for small dispersed
phase volume fractions and for small particle digemse Consequently, the FAD model may
be considered to be a generalization of the Camodel, valid for larger dispersed phase
volume fractions, and for general drag laws.

Note that the poly-dispersed forms of the FAD arafriCa model differ in their use of
volume fraction gradients. The Carrica model assutinat the total turbulent dispersion force
acting on each dispersed phase is proportiondidovblume fraction gradient of that phase
only. The FAD+EDH model for poly-dispersed flow §2fhas equal and opposite
contributions for each continuous-dispersed phase proportional to a difference of volume
fraction gradients.

5. Validation

In section 4, it has been shown that the FAD maglelquivalent to several other models in
the literature, in the limit of low dispersed phasdume fraction. Hence, all validation work
reported for these models is also applicable toRAB model. Here we present two further
validation exercises, one for liquid-solid flowsdaanother for bubbly flows. All simulations
have been performed using user-fortran implememntstiof the FAD Model in the
commercial CFD package CFX-5.6 (2003).

Both validation exercises employed either the sehdk-£ model, or the Shear Stress
Transport (SST) turbulence model (Menter 1994) lfier ¢tontinuous phase. Particle induced
turbulence was accounted for following the enharestly viscosity model of Sato et al, 1975
and 1981. The dispersed phase turbulence was dremgsuming a simple algebraic
relationship between the dispersed phase and canignphase kinematic eddy viscosities:

V= e (42)

1%}
O,

where the eddy viscosity Prandtl numlmg was set equal to unity. Also, the turbulent
Prandtl number for volume fractioa;,, was set equal to unity in all calculations.

-9-



5th International Conference on Multiphase Flow, ICMF'04
Yokohama, Japan, May 30-June 4, 2004
Paper No. 392

5.1 Validation for bubbly flowsin a vertical pipe

Experimental set up and test case definitions

The validation of the FAD model for gas-liquid flewvas based on the Forschungszentrum
Rossendorf (FZR) wiremesh sensor measurement datdba upward air-water flows in a
vertical pipe established at the MT-Loop test facilThe primary purpose of this experiment
is to permit the validation of models for interfaiciorces implemented in CFD codes.

As is illustrated in Fig. 5.1(a), the test sectivd m long and has an inner diameter 51.2 mm.
The Loop was operated under atmospheric pressuteaaconstant temperature of 30C.
Measurements were carried out for stationary flofvsamious air-water superficial velocity
ratios at 10 different cross sections located betwe D = 0.6 and 59.2 from the gas injection
using a wiremesh sensor with 24 x 24 electrodesefGlameasures were taken to ensure
axial-symmetry of the macroscopic flow. Details abthe experimental set up and data
accuracy are provided in Prasser et al., 2003t present validation we defined a number
of test cases in the bubbly flow regime with walkgeak and compared the numerical results
obtained using the FAD and RPI models against threasorement data at the top
measurement cross section L/D = 59.2. Numericatexgents (Shi et al., 2004) showed that
the gas concentration distribution at this crossice is independent of the inlet velocity and
gas volume fraction profile. The test cases, togrethth the inlet superficial velocities of
both phases corresponding to the normal conditnohte mean bubble diameter measured at
L/ D =59.2, needed as input parameters for theamizad simulation, are listed in Fig. 5.1(a).

design parameters:

do Ui sup Ug.sup
[mm] [m/s] [m/s]
017 | 4.8 0.405 | 0.0040
019 | 48 1.017 | 0.0040
H 038 | 4.3 0.225 | 0.0096
039 | 45 0.405 | 0.0096
040 | 4.6 0.641 | 0.0096
s 041 4.5 1.017 | 0.0096
042 | 36 1.611 | 0.0096
074| 45 1.017 | 0.0368

Test

OHOR0

vertical test cection:
diameter 29, 51.3, 70 mm
length 4000 mm

SEGHOS

P

SHEHG

5
2

deionized feed
< walter system

Fig. 5.1(a) MT-Loop Test facility and a list of test cases.

Numerical settings

The numerical simulation was based on the CFX twiotimodel. Both fluids were assumed
to be incompressible and the bubble diameter wasnasd to be constant within the total
computational domain. The interfacial forces aresodered by the following models, the
Grace model for the drag force (Grace and Webe32)19he Tomiyama correlations for the
lift and wall lubrication force, (Tomiyama et al9® 1998), and either the FAD or the RPI
model for the turbulence dispersion force. Heres tRPI model’ refers to the constant
coefficient Lopez de Bertodano model, eq. (37). alded mass force was neglected for the
stationary flow considered here.

A detailed discussion on the lift and lubricati@rdes is given in Shi at al 2004. Here, we
concentrate on comparisons between the turbuleisperdion models. Shi et al 2004 also
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considered comparisons of both the and SST turbulence models. It was concluded there

that the SST model yielded superior predictiongh® k- model. All comparisons here
employ the SST model.

A computational domain consisting of a 3 degredosecf the pipe with the symmetry
condition on both sector faces was applied in theuktion. A uniform volume fraction
distribution was assumed for both phases at thet idgether with a 1/7-th power inlet

velocity profile, U, :1.224J0(1—r*)1/7, whereUg is the mean value, for the liquid, and a

uniform profile for the gas phase. The radial vi#lowas assumed to be null. In addition, a
medium turbulence intensity (5%) was assigned thEne outlet was located at 3.3m away
from the inlet, where an averaged static pressqualeto the atmospheric pressiig was

assigned. The pressure field was initialized usihg expressioR =P, + ,0,|g 383- L)| .
Details on the convergence error, grid dependehteeaesults and the inlet condition effect
are reported in Shi et al (2004).

Evaluation and discussion

Calculation was carried out using the FAD and tiid Rodel for the turbulence dispersion
force, respectively. The results for the normalizédvolume fraction, which is defined by
equation (43), were compared at the cross sectiosen for validation, L/D = 59.2.

. _a : A
a, =——, with a,, :Zj‘ag(r )' dr (43)
ag,o 0

Computational results are displayed in Fig. 5.1(tggether with the corresponding

measurement data. It can be observed that all ncaheesults based on the FAD model

agree fairly well with the experimental data. Itabserved from Fig. 5.1(b) that the gas
volume fraction obtained using the RPI model issistently lower in the core region than

those based on the FAD model. This indicates agéwoturbulence dispersion force given by
the latter. The difference of the results is nateasial in all cases. Nevertheless, the FAD
model leads to much better agreements with thergwpstal data in certain cases, such as
FZR-074, though the core gas concentration is stillerpredicted. This deviation can be
reduced by using two fluids for the gas phase, haseparating the larger bubbles (negative
lift force) from the small ones. This will be thelgect of future investigation.

Similar to the observation to FZR-074 and FZR-0#2, RPI model overpredicted the wall
gas peak, and at the same time underpredictedthegas concentration in all cases. In order
to make a direct comparison for both models, threesponding turbulence dispersion force
coefficient of the FAD model was estimated fortalit cases using eq. (39) and is plotted in
Fig. 5.1(c) together with a constant coeffici€it = 0.35 used in the RPI model. The results
clearly show that the turbulence dispersion foreemg by the RPI model is much too weak,
except in the near-wall region. Moreover, Fig. 5 HIso shows that a constant coefficient
Crp as assumed in the RPI model is not realistic. Duéhis oversimplification, the RPI
model does not take a number of physical dependem=gpearing in eq. (39) into account. In
addition, it is interesting to note th@ip decreases with increasing superficial velocityhef
continuous phase. This is because the bubble responety is similar for all test cases due
to their similard, whereas the turbulence time scajedecreases with increasing flow
Reynolds numbers.

Despite the acceptable agreements between numeesalts and measurements achieved

using the above non-drag force models, it is nergds address the limitation of the present

study. First, bubble coalescence and breakup wgtected in this investigation. Larger

bubbles which receive a negative lift force wergoahot distinguished from small bubbles.

This might be the main reason responsible for #ngations observed in the core region. In

addition, the numerical results indicate a bublpée fregion in the wall proximity, which is
-11 -
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different from the experimental data. A number afuges can have contributed to this
deviation, e.g., the decreased measurement accurdog wall proximity and the inaccuracy
of the wall lubrication force models.
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Fig. 5.1 (b) Comparisons between the RPI and FAD model.
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Fig. 5.1(c) Equivalent Ctp coefficient of FAD model in comparison with RPI Moddl.

5.2 Liquid-Solid Flowsin Mixing Vessels

CFD results are presented for one of the experiah@ases investigated by Micheletti 2003.
The system comprises a single six-blade Rushtantdibine in a cylindrical mixing vessel of
diameter, T, and height, H, 290mm, with four wathumted full-length baffles of radial
extent T/10. Details of the specific case whichimsulated are:

e Impeller clearance - C=0.33T

* Impeller speed - 800rpm

» Particles - glass ballotini, diameter 600-{dfr) average volume fraction,&5.5%

» Continuous-phase fluid - tap water

The CFX simulation uses the following set-up:

* Wen Yu (1966) correlation for interphase drag doefht. This model employs the
standard Schiller-Naumann drag model with volunaetfon corrections to account
for hindered settling effects

* FAD model for turbulent dispersion.

e SST turbulence model (Menter 1994) for the contisyahiase, enhanced by Sato and
Sekoguchi 1975 model for particle-induced turbuéenc

» Dispersed-phase zero-equation turbulence modéhéoparticle phase.

* High Resolution differencing on all equations

* Hexahedral mesh, with 211640 elements, 229565 ndtessymmetry of the system
is exploited such that only one half of the vesssimulated.

» Steady-state Frozen Rotor model

* The vessel is modeled in the with-lid conditionthwa no-slip wall used at the upper
boundary.

Micheletti’'s experimental results are presentedemnms of particle volume fractions on two
vertical lines through the vessel, one at 0.251, the other at = 0.4, located on a plane
mid-way between an adjacent pair of baffles. Thpeexental data are obtained using a
conductivity probe with 10mm square electrodes medinlOmm apart (Micheletti et al
2003). As there is no information available frome texperimental study on the size
distribution of particles within the specified rangf 600-71m, simulation results are
presented for mono-disperse systems at the twerags of the size range.

The measuring location at= 0.25T lies within the rotating part of the computatiodaimain.
Since the steady-state Frozen Rotor model doesprmduce time-resolved results, a
circumferential average of the predicted volumetfoa is calculated. This is assumed to
provide a fair representation of the time averaigthe periodic variation in volume fraction
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experienced by the probe. Minimum and maximum vahfethe particle volume fractions
within a region t5mm from the stated data point ameluded. This dimension is
representative of the size of the conductivity jeraked in the experimental work.
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At r = 0.45T, two sets of results are presented. One set tiemnay-plane, which is located
mid-way between baffles and is aligned with onéhefimpeller blades; the other is onxan
plane, which is located mid-way between baffles padses mid-way between a pair of
impeller blades. In all of the volume fraction plefgraphs, the discrete points are the
experimental data, whilst the three solid linestaeeminimum, average and maximum values
of the CFD results.

The results at = 0.25I are presented in Figures 5.2(a) and 5.2(b) fo60@m and 71Qm
particles respectively. The predictions are in gagteement with the experimental data, and
indicate that the particle distribution in this i@gis relatively insensitive to particle size.

Figures 5.2(c) and 5.2(d) contain the results at0.451 for 60Qum particles plotted on the
xy- andxz- planes between baffles described above. Figug$e)sand 5.2(f) present the same
data for the 710m particles. The predictions here consistently wpdedict the particle
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volume fractions recorded experimentally, though ¢brrect trend is predicted. It is notable
that there are differences between the predictatseon the two plotting locations.

Figures 5.2(g) and 5.2(h) show contours of partdiime fraction, normalized by the mean
volume fraction. Figure 11 presents the full ran§galues within the plane, whilst Figure 12
uses a reduced range of 0 to 3, to emphasize thé dear the walls. In the region below the
impeller, the solids concentration attains a maximealue of ~60%. The CFD model does
not include any solids pressure terms to accountpfrticle-particle impacts and may
therefore be expected to over-predict the soliddilny in regions where sedimentation
occurs. This accumulation of solids at the baséhefvessel will therefore lead to a lower
mean concentration in the remainder of the ve3$es may be one explanation for the lower
prediction of particle volume fraction at the vdssall.
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Fig. 5.2 (g) Normalised Volume Fractions Fig. 5.2 (h) Normalised Volume Fractions
(reduced range)

6. Conclusions

The Favre Averaged Drag Model has been shown torgkeres most current models of
turbulence dispersion, and to possess a wide defrag@versality. Consequently, it has been
implemented as the default model of choice foruilebce dispersion in CFX-5.7 (2004).

Many topics remain for further investigation. Foample:

* The current model assumes a linear dependencagffairce on slip velocity, as far as
the averaging procedure is concerned. How is theéetmaffected by generalizing this
to take into account dependenceédgi (eq. 16) on slip velocity?

* Similarly, how is the model changed by taking irdecount volume fraction
dependence of the drag coefficient, for exampleygvolaw corrections at high
dispersed phase volume fractions?

* Inits general form (eq. 21), the FAD model is addle, in principal, to second order
closure models for turbulence, and to separatedeisas dispersed multi-phase flows.

We believe such further investigations will provitlether fruitful insights into turbulent
multiphase flows.

Acknowlegements

This work is the result of a strong collaboratiatvieeen Forschungszentrum Rossendorf and
ANSYS-CFX Germany. Financial support is gratefudigknowledged from the Ministry of
Economy and Labour (BMWA) of Germany in the proj6€OPFLOW - Transient two
phase flow test facility for generic investigatiohtwo-phase flows and further development
and validation of CFD codes”, and to ANSYS Germ&mbH in the project “Development

-15-



5th International Conference on Multiphase Flow, ICMF'04
Yokohama, Japan, May 30-June 4, 2004
Paper No. 392

of CFD codes for multidimensional flows in reactafety applications”.

We are grateful to King’s College, London, for kipdrmission to show the results of the
experiment and simulations by Micheletti et al. Thegere performed as part of Project
OPTIMUM, G1RD-CT-2000-00263, ‘Optimization of IndusirMultiphase Mixing’, funded
by the European Community under the ‘Competitivel @ustainable Growth’ Program
(1998-2002).

References

1. A.Behzadi, R.I. Issa, H. Rusche (2001), Effedtsirbulence on inter-phase forces in
dispersed flowlCMF 2001, 4th Int. Conf. Multiphase Floiew Orleans, LA, USA.

2. D.C. Besnard and F .H. Harlow (1988), Turbulemtemultiphase flow,Int. J.
Multiphase Flow Vol. 14, p. 679.

3. P.M. Carrica, F. Bonetto, D.A. Drew, R.T. Lahel©$8), The interaction of
background ocean air bubbles with a surface $hip,J. Num. Meth. Fluidsvol. 28,
p. 571.

4. P.M. Carrica, D.A. Drew, R.T. Lahey (1999), A yisperse model for bubbly two-
phase flow around a surface sHit, J. Multiphase FlowVol. 25, pp. 257-305.

5. C.T. Crowe (2000), On Models for Turbulence Motlalain Fluid-Particle Flows,
Int. J. Multiphase FlowVol. 26, p. 719.

CFX-5.6 Users Manual, ANSYS, 2003.
CFX-5.7 Users Manual, ANSYS, 2004.

. D.A. Drew (1983) Mathematical Modelling of Two-RleaFlows Ann. Review Fluid
Mech, Vol. 15, p. 261.

9. S.E. Elghobashi and T.W. Abou-Arab (1983), A taguation turbulence model for
two- phase flowsPhys. Fluids Vol. 26, p. 931.

10. AD. Gosman, C. Lekakou, S. Politis, R.l. Issmd M.L. Looney (1992),
Multidimensional Modeling of Turbulent Two-Phase F®vin Stirred Vessels,
AIChEJ Vol. 38, p. 1946.

11.J. R. Grace and M. E. Weber ( 1982), Hydrodynanaf drops and bubbles, in
Handbook of Multiphase Systems, ed. G. Hetsroni, idphere.

12. K. Johansson, A. Magnesson, R. Rundgvist and Alfastedt (2001), Study of two
gas-particle flows using Eulerian/Eulerian and filwed models,ICMF 2001, 4th Int.
Conf. Multiphase FlowNew Orleans, LA, USA.

13. B. Kashiwa and W.B. VanderHeyden (2000), Towaed General Theory for
Multiphase Turbulence Part I: Development and Gayigihthe Model Equations,
Los Alamos National Laboratory Report LA-13773-MS.

14.|. Kataoka (1986), Local instant formulation tafo-phase flow/nt. J. Multiphase
Flow, Vol. 12, p. 745.

15. I. Kataoka and A. Serizawa (1989), Basic equatiof turbulence in gas-liquid two-
phase flow)nt. J. Multiphase FloywVol. 15, p. 843

16. E. Krepper, H.M. Prasser (2000), MeasuremendsGiX-Simulations of a bubbly
flow in a vertical pipe AMIF-ESF Workshop "Computing Methods for Two-Phase
Flow", Aussois, France.

17. C. Ljus (2000), On particle transport and tlehoe modification in air-particle
flows, Ph. D. Thesis, Chalmers University of Tedogy, Sweden.

-16 -



5th International Conference on Multiphase Flow, ICMF'04
Yokohama, Japan, May 30-June 4, 2004
Paper No. 392

18. M. Lopez de Bertodano, (1992), Turbulent bubig-phase flow in a triangular
duct, Ph. D. Thesis, Rensselaer Polytechnic Iretitdew York, USA.

19. M. Lopez de Bertodano, R. T. Lahey and 0. Ceddt994a), Development of a k-e
model for bubbly two-phase flowyrans. ASME J. Fluids Enyol. 116, p. 128.

20. M. Lopez de Bertodano, R. T. Lahey and 0. Cedda994b), Phase distribution in
bubbly two-phase flow in vertical ductst. J. Multiphase FlowVol. 20, p. 805

21. M. Lopez de Bertodano, (1998), Two fluid mod®l fwo-phase turbulent jelucl.
Eng. DesVol 179, p. 65.

22. D. Lucas, E. Krepper, H.-M. Prasser (2001), Divaent of bubble size distributions
in vertical pipe flow by consideration of radialsgfraction profilesJCMF 2001, 4th
Int. Conf. Multiphase FlowNew Orleans, LA, USA.

23. F.R. Menter (1994), Two-equation eddy-viscositypulence models for engineering
applicationsAlAA-Journal Vol. 32, No. 8.

24. F.R. Menter (2002)CFD Best Practice Guidelines (BPG) for CFD codeidation
for reactor safety application&€C Project ECORA, Report EVOL-ECORA-DO1.

25. M, Micheletti (2002), Solid concentration measoeets in stirred vessels — Part 2.

26. M. Micheletti, L. Nikiforaki, K.C. Lee, and M. Yimmeskis (2003), ‘Particle
Concentration and Mixing Characteristics of Moderabe Dense Solid-Liquid
Suspensionsindustrial and Engineering Chemistry Researebl. 42, p. 6236.

27.F.J. Moraga, A.E. Larreteguy, D.A. Drew, R.T.heg (2001), Assessment of
turbulent dispersion models for bubblgMF 2001, 4th Int. Conf. Multiphase Flow
New Orleans, LA, USA.

28. F.J. Moraga, A.E. Larreteguy, D.A. Drew, R.T.heg (2003), Assessment of
turbulent dispersion models for bubbly flows in tbev Stokes number limitint. J.
Multiphase Flow Vol. 29, p. 655.

29. H.-M. Prasser, D. Lucas, E. Krepper, D. Bald2003), A. Bottger, U. Rohde et.al,
Stromungskarten und Modelle fir transiente ZweiphasdmungenForschungs-
zentrum Rossendorf, Germany, Report No. FZR-37% 2003.

30. Y. Sato, K. Sekoguchi (1975), Liquid velocitgtdbution in two phase bubble flow,
Int. J. Multiphase FlowVol. 2, p. 79.

31. Y. Sato, M. Sadatomi and K. Sekoguchi (1981), Motum and heat transfer in two
phase bubble flowint. J. Multiphase FlowVol. 7, p. 167.

32. Serizawa and |. Kataoka (1990), Turbulence 2ggon in bubbly two-phase flow,
Nucl. Eng. Designvol. 122, p.1.

33.J.-M. Shi, Th. Frank, E. Krepper, D. Lucas, UhoRe, and H.-M. Prasser,
Implementation and Validation of Non-Drag Interf@cForces in CFX-5.6|CMF
2004, 5th Int. Conf. Multiphase Flowokohama, Japan.

34. A. Tomiyama, A. Sou, I. Zun, N. Kanami, andSkkaguchi (1995), Effect of Eotvos
number and dimensionless liquid volumetric flux lateral motion of a bubble in a
laminar duct flowAdvances in Multiphase Flow, 3-5, Elsevier Science.

35. A. Tomiyama, (1998), Struggle with computatiobabble dynamicsiCMF'98, 3rd
Int. Conf. Multiphase Flowl,.yon, France.

36. C.Y. Wen and Y.H. Yu (1966), Mechanics of flgaion,Chem. Eng. Prog. Symp.
Series Vol. 62, p. 100

217 -



