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Abstract. A general framework is presented for the modeling of turbulent dispersion in Eulerian 
Multi-Phase Flows. The approach is based on a double averaging procedure of the local instant 
equations. 

We start with the ensemble averaged equations of Eulerian multi-phase flow. We perform a second 
time average of these, in order to form equations which may be used to model turbulent multi-phase 
flows. These are conveniently expressed in terms of Favre or Mass averaged variables.  

Turbulent dispersion is modeled by performing a time average of the interphase drag term in its 
modeled form, and expressing it in terms of Favre averaged variables. The resulting double averaged 
momentum equations contain additional terms which account for a turbulent dispersion force. We call 
the resulting model the Favre Averaged Drag (FAD) model for turbulent dispersion. It is first 
presented in a general form which may be used in conjunction with any Reynolds averaged turbulence 
model, and for an arbitrary number of phases with arbitrary morphologies.  

For the purposes of this study, we make two further specializations, to poly-dispersed multiphase 
flows, and to turbulence models which employ the eddy diffusivity hypothesis. The resulting model is 
compared to several other models that have appeared in the literature, We show that all are special 
cases of the FAD model, within certain physical and mathematical limitations. Hence the FAD model 
encompasses all of these models, but has a potentially wider range of universality. 

The FAD model has been implemented in the commercial CFD package, CFX-5, and tested against a 
range of dispersed multiphase flows, including bubbly flows in vertical pipes, and liquid-solid flows in 
mixing vessels. The FAD model is shown to yield superior predictions in all cases. 

 
 

1. Introduction 
The accurate modeling of multi-dimensional turbulent multiphase flows is a challenging task. 
Many phenomena occur which need to be accounted for explicitly in the modeling procedure. 
For example: 

Turbulent Dispersion. Turbulence in one phase has a direct effect on the migration of fluid 
particles in the other phases. For example, in a dispersed multi-phase flow, turbulence in the 
continuous phase causes particles in the dispersed phase to be transported from regions of 
high concentration to regions of low concentration. 

Turbulence Modulation. Conversely, the mere presence of dispersed phases within a 
continuous phase can affect turbulence within the continuous phase. Large particles tend to 
increase turbulence levels in the continuous phase, due to enhance shear production in their 
wakes. However, large concentrations of small particles tend to decrease turbulence in the 
continuous phase. See, for example, Crowe (2000). 

Buoyancy Production. Large mean density gradients are the rule rather than the exception in 
most practical multi-phase flows. Hence, buoyancy effects on turbulent production should be 
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expected to be important. For example, significant damping of turbulence should be expected 
to occur in stably stratified multi-phase flows. 

In this paper, we address the phenomenon of turbulent dispersion. However, we expect the 
methods used here to also have significant impact on future modeling of other turbulent multi-
phase flow phenomena. 

2. Averaging Procedures 
Averaging procedures are traditionally used in the modeling of both single-phase turbulent 
flows, and multi-phase flows.  

2.1 Single Phase Turbulent Flow 

Typically, the unaveraged Navier-Stokes equations are time- or ensemble-averaged to form 
the Reynolds Averaged Navier-Stokes equations. In particular, averaging of the non-linear 
advection term produces an additional contribution to the momentum flux, known as the 
Reynolds Stress tensor. The equations are closed by providing closure models for the 
Reynolds stresses. The simplest models employ the eddy viscosity hypothesis. More complex 
second order closure models solve modeled transport equations for the Reynolds Stresses. 

For variable density single-phase flows, it turns out to be convenient to express the time- or 
ensemble-average equations in terms of Favre or Mass Weighted variables. The advantages of 
this formulation are: 

1. There are no additional terms in the averaged continuity equation. 

2. There are fewer terms requiring direct modeling in the momentum and other transport 
equations. 

2.2 Eulerian Multi Phase Flow.  

We start with the local instant transport equations which govern the flow of each distinct 
phase. These are the time-dependent Navier-Stokes Equations: 
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Here, ρ, Ui denote the local density and velocity fields, τij denotes the viscous stress tensor, 
and P and Bk denote pressure and volumetric body forces. At any point in space and time, 
only one phase may be present. We denote distinct phases with Greek subscripts α, β etc. For 
each phase, we define the phase indicator function, or characteristic function: 

( ) 1, =txαχ  if phase α is present, ( ) 0, =txαχ  otherwise. 

We select an appropriate averaging procedure, namely ensemble-, time- or space-averaging, 
Φ→Φ and we define phase-averaged variables as follows: 

 αα χ=r = volume fraction of phase α (3) 

 ααα ρχρ r/= = material density of phase α (4) 

 ααα ρρχ /Φ=Φ = phase averaged transport variable in phase α (5) 

Here, Φ denotes any transported variable, and we note that the phase averaging procedure is a 
mass-weighted averaging procedure. Strictly speaking, rα is only a volume fraction if we are 
employing volume averaging. It is a residence time average if time averaging, and an average 
fraction of occurrence if ensemble averaging. 
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Phase averaged equations are derived by multiplying the local instant equations by the phase 
indicator functions, and averaging. Two distinct approaches are predominant in the literature: 

1. Take single-phase flow equations in each phase separately, supplemented by interphase 
boundary conditions, or jump conditions. See Drew 1983 for details. 

2. Alternatively, use the local instant equations defined in the whole of space, using the theory 
of distributions to permit partial derivatives of discontinuous quantities to be defined. This is 
the approach of Kataoka (1986) and Kataoka and Serizawa (1989). It is conceptually simpler 
in that it does not require detailed accounting of interphase boundary conditions. 

Both approaches lead to phase averaged equations which typically take the form: 

 ( ) ( )( )( ) kk
k

t
ikikki

i
k MBr

x

P
rUUr

x
Ur

t αααααααααααα ττρρ ++
∂
∂−=+−

∂
∂+

∂
∂

 (6) 

 ( ) ( ) 0=
∂
∂+

∂
∂

i
i

Ur
x

r
t ααααα ρρ  (7) 

Note that kMα denotes the interfacial forces acting on phase α due to the presence of other 

phases. This is traditionally split into several contributions from drag force, lift force, virtual 
mass force etc. Also,t ikατ denote Reynolds stress like terms,  

 αααα ρτ ji
t
ik uu ′′−=  (8) 

where αiu′ denote fluctuating velocity fields relative to the phase average. 

2.3 Turbulent Multi Phase Flow.  

The phase averaged equations (6) and (7) are already derived using an averaging procedure. 
Moreover, they contain Reynolds stress like terms (8). Hence, it is not unreasonable to 
assume that they provide a complete basis for the modeling of turbulent multi-phase flow. 
This approach has been followed, for example, by Kashiwa and VanderHeyden (2000). 
Kataoka and Serizawa (1989) derived exact transport equations for the phase averaged 
turbulent kinetic energy and energy dissipation which arise in this approach. In particular, 
terms may be identified for enhanced turbulence production, which are exact once the terms 
for interfacial forces are closed. Attempts have also been made to model enhanced turbulence 
dissipation based on this approach (Serizawa and Kataoka 1990).  

However, if the phase averaged equations are derived using ensemble averaging, then they are 
fully space and time dependent. Hence, it makes mathematical sense to apply a second time-
averaging operation to the equations, and to use the resulting double averaged equations as 
the basis for modeling turbulent multi-phase flows. This approach has also been followed by 
many authors, for example, Elghobashi and Abou-Arab (1983), Besnard and Harlow (1988). 

It is not obvious to the present authors which of the above two approaches is more soundly 
based physically. We believe it is important to work out the consequences of both approaches, 
and to compare resulting models with experiment. In particular, we shall see that the double 
averaging approach leads to some nice physically intuitive models of turbulent multi-phase 
phenomena, which we believe are difficult to derive from the single averaging approach 
alone.  

Within the double averaging approach, there is a further choice to be made. Namely, whether 
to base the modeled equations on time averaged or on Favre averaged variables. Experience 
with single phase turbulent flow has demonstrated the superiority of the Favre averaged 
approach for variable density flows, as it leads to much fewer higher order correlation terms 
which require modeling. As multiphase flows have much in common with variable density 
single phase flows, we expect the same principles to apply. Elghobashi and Abou-Arab 
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(1983) derived time-averaged versions of the phase-averaged equations, including exact 
transport equations for turbulent kinetic energy and dissipation. These contained 38 and 64 
terms respectively. Besnard and Harlow (1988) employed the Favre averaging approach. 

2.4 Favre Averaging.  

Favre averaging of phase-averaged variables is defined as follows: 

 αααααα ρρ rr /
~ Φ=Φ  (9) 

 
Here, the phase averaged variables are as defined in equations (3), (4) and (5), and the overbar 
denotes the time averaging operation. For simplicity, we consider constant density phases, in 
which case Favre averaging reduces to a volume fraction weighted average: 

 αααα rr /
~ Φ=Φ     �     αααα Φ=Φ ~

rr  (10) 

From this, we deduce a simple relationship between Favre-averaged and time-averaged 
quantities: 

 ( )( )αααααα φ ′+Φ′+=Φ rrr     �     ααααα φ rr /
~ ′′+Φ=Φ  (11) 

Here, single dashes denote fluctuating quantities relative to the time-averaged variable. This 
indicates the importance of correlations between fluctuating volume fractions and fluctuating 
variables to relate Favre averaged and time-averaged variables. 

In particular, time-averaged and Favre averaged velocities are related by: 

 ααα uUU
���
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~
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�� ′′=′′  (12) 

The quantity ααur ′′ � is fundamental to turbulent dispersion, as it describes how phasic volume 

fractions are spread out by velocity fluctuations. In eddy-viscosity type turbulence models, it 
is modeled via the eddy diffusivity hypothesis (EDH): 

 α
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Here, νtα is the kinematic eddy viscosity of phase α, and σrα is the turbulent Prandtl number 
for volume fraction dispersion, expected to be of order unity. 

2.5 Favre Averaged Continuity Equations.  

Time averaging the phasic continuity equations (7) gives: 
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Hence, we have an extra term involving the volume fraction-velocity correlation. This yields 
an additional diffusion term if we employ the eddy diffusivity hypothesis (13).  

However, we may use the relation (10) to express the time-averaged continuity equations in 
terms of Favre averaged velocities: 
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In this case, no extra terms appear. This is clearly a mathematical simplification, not a 
physical one. We shall see in the next section that, using Favre averaging, turbulent dispersion 
may be accounted for entirely in the time-averaged momentum equations. 
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3. Turbulent Dispersion Force 
Consider the concrete situation of a turbulent continuous phase interacting with a dispersed 
particulate phase. Particles will tend to get caught up in continuous phase turbulent eddies, 
and hence be carried from regions of high concentration to regions of low concentration. 

The mechanism responsible for particle acceleration due to continuous phase velocity 
fluctuations is that of interphase momentum transfer. That is, the interfacial forces 

kMα occurring in the phase averaged momentum equations (6). Hence, it is reasonable to 

assume that turbulent dispersion may be modeled using the time average of the fluctuating 
part of the interphase momentum force. This idea was first introduced by Gosman et al 
(1992), employing the drag component only of the total interfacial force. The paper by 
Behzadi et al (2001) subsequently considered the additional effects of the lift and virtual mass 
forces, but found them not to be significant.  

We restrict our attention here to the interphase drag force. We assume a general model for this 
force which is proportional to the slip velocity and the interfacial area density Aαβ: 

 ( ) ( )αβαβαβαβαβα UUADUUCM
�����

−=−=  (16) 

For example, for a dispersed two phase flow involving a continuous phase α, and dispersed 
phase β, with Sauter mean diameter dβ and non-dimensional drag coefficient CD, we have: 
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As a first approximation, we assume that the proportionality factor Dαβ in equation (16) may 
be treated as approximately constant as far as the averaging procedure is concerned. That is, 
we only account for velocity fluctuations in the linear slip velocity term, and for volume 
fraction fluctuations in the area density term. This will be true for dispersed two phase flows 
whose drag coefficient obeys Stokes’ law, but it is an approximation for other drag laws. This 
approximation may be relaxed in further work. 

3.1 Time Averaged Drag Force 

Time average equation (16), taking into account velocity fluctuations and area density 
fluctuations. We obtain: 

 ( ) ( )( )uuaUUADM ′−′′+−= �����

βαβαβαβαβα  (18)  

So, in this case, the time-averaged drag term consists of the original unaveraged drag term, 
written in terms of time-averaged variables, plus an extra term proportional to the area 

density-slip-velocity correlation ( )( )αβαβαβ uuaD ′−′′ ��
. If modeled using the eddy diffusivity 

hypothesis, this is given by: 
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where σAα and σAβ are turbulent Prandtl numbers for interfacial area density.  

3.2 Favre Averaged Drag Force 

We may express the time averaged drag (18) in terms of Favre averaged velocities using the 
relation (12). We obtain: 

 ( ) TDMUUCM ααβαβα

��

+−= ~~
 (20)  

This contains the original drag force, expressed in terms of Favre averaged velocities, 
together with an additional term which is given by: 
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Turbulent Dispersion Force (General Form): 
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If using the eddy diffusivity hypothesis (EDH), this may be closed as follows: 

Modeled Form (EDH): 
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It is expected that all turbulent Prandlt numbers should be of order unity. 

3.3 Poly-Dispersed Multi-Phase Flow 

Equation (21) expresses the most general form of the Favre Averaged Drag (FAD) model for 
the turbulent dispersion force. It is applicable to first and second moment closure turbulence 
models, and to phase pairs of arbitrary morphology. We now wish to restrict attention to 
dispersed multi-phase flows, in which case further simplifications are obtained. 
Assume throughout that phase α represents a continuous phase, and that phase β represents a 
dispersed phase of mean diameter dβ. Then, the interfacial area density is given by: 
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Hence, the area density-slip-velocity correlation may be expressed in terms of volume 
fraction-velocity correlations:  
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Consequently, equations (21) and (22) further simplify to: 

General Form 
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Modeled Form (EDH): 
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It is interesting to note that all term involving the dispersed phase eddy viscosity have 
cancelled, so the modeled form of the turbulent dissipation force depends only on the 
continuous phase eddy viscosity. This cancellation occurs due to our inclusion of fluctuating 
area density effects. 

3.4 Dispersed Two Phase Flow 

In the special case of two phases only, 1=+ βα rr , so 0=∇+∇ βα rr . Hence, the modeled 

EDH form of the turbulent dispersion force reduces to a simple volume fraction gradient:  
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4. Comparison with Other Models 
In this section, we compare the Favre Averaged Drag (FAD) model with similar models 
derived by other authors. We restrict attention to the model equations (26) and (27) for 
dispersed multiphase flows employing the eddy diffusivity hypothesis. For comparison 
purposes, substitute equation (17) into (27) to express the dispersed 2-phase FAD+EVM 
model in terms of non-dimensional drag coefficient: 
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In the limit of dilute dispersed two-phase flow, 0→βr , this is asymptotically equivalent to: 
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4.1 Imperial College Model 

As indicated in section 3, the idea of modeling the turbulence dispersion force by Favre 
averaging the drag term was first proposed by Gosman et al (1992). Following the exposition 
in Behzadi et al (2001), the turbulent contribution of the drag force is modeled using: 
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This is very similar to, though not identical to equation (28) for the FAD model. Both have 
the same asymptotic limit (29), as 0→βr , for dilute dispersed two phase flow. 

4.2 Chalmers University Model 

Ljus (2000) and Johanssen et al (2001) have derived and validated a similar model to equation 
(27) for dispersed two phase flow. However, their model requires highly unconventional 
volume fraction Prandtl numbers, of order 0.001, to achieve reasonable agreement with 
experiment. This is due to minor errors in their analysis, which are clarified here. 

Ljus (2000) implicitly uses time-averaging, but neglects the resulting diffusion term in the 
time-averaged continuity equation (14) on the grounds that volume fraction variations are 
small. Only the additional term from time-averaged drag, equation (18), is modeled, 
employing a model of the form: 

 ( )( ) αβαβαβαβ ββ kruuaD ∇+∇=′−′′ 21
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The retention of volume fraction gradients in the first term means that their neglect in the 
continuity equation is incorrect. However, the model can be salvaged by reinterpreting the 
averaging procedure as Favre averaging, and taking the RHS of (32) as a model for the 
fluctuating terms in the Favre Averaged Drag, equation (21). 

The unconventionally small volume fraction Prandtl numbers σd1 arise because of the use of 
dispersed phase eddy viscosity in the definition of β1. This is in contrast with our model 
equation (27) which only employs the continuous phase eddy viscosity. The Ljus model was 
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employed in conjunction with an algebraic model for dispersed phase eddy viscosity: 
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Here, σνβ is an eddy viscosity Prandtl number, which is modeled as a function of the ratio of  
turbulent Stokes number, St = the ratio of particle relaxation time τβ, and the integral turbulent 
time scale τt, as follows: 
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Hence, comparing the FAD model (27) with the first term of the Ljus model (32), we see that 
they are equivalent in the limit of small rβ, provided we make the algebraic identification: 

 
νβ

α

σ
σσ r

d =1  (36) 

Thus, the parameter σd1 in the Ljus model is not the true volume fraction Prandtl number. It is 
the ratio of the volume fraction Prandtl number and the eddy viscosity Prandtl number. This 
explains the unconventionally low value of σd1 = 0.001 required to obtain agreement with 
experiment. The comparisons with experiment in Johansson et al (2001) involved large solid 
particles in gas, with large relaxation times, and hence correspondingly large values of the 
eddy viscosity Prandtl number σνβ.  

The second term of the Ljus model involves gradients of turbulent kinetic energy. Such terms 
are likely to occur in the FAD model if we were to take into account variations of Cαβ which 
are linear in slip velocity. This may be a topic of future investigations.  

4.3 RPI Models 

Research workers at Rensselaer Polytechnic Institute (RPI) have developed two volume-
fraction based gradient models for turbulent dispersion applied to bubbly two phase flows. 
These are both discussed below. 

Lopez de Bertodano Model 

The original model of Lopez de Bertodano (1992) takes the form: 

 αααβα ρ rkCMM TD
TDTD ∇−=−=

��

 (37) 

CTD is a non-dimensional empirical constant. CTD = 0.1 to 0.5 was found to give reasonable 
results for medium sized bubbles in the ellipsoidal particle regime (Lopez de Bertodano et al 
1994a, 1994b). However, flow regimes involving very small bubbles or very small solid 
particles were found to require very different values of CTD, up to 500. Hence, this model was 
revised by Lopez de Bertodano (1999), where it was proposed that CTD be expressed as a 
function of turbulent Stokes number as follows: 
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The 2-phase version of the FAD model (27) may be expressed in the same form as the Lopez 
de Bertodano model (37), by substituting the formula for eddy viscosity, ααµα εν /2kCt = into 

(27). We find that the two models are equivalent, with the adjustable ‘constants’ related as 
follows: 

 ��
�

�
��
�

�
+=

�
�

�

�

�
�

�

�
+= 1

1
41.0

11

α

β

α

µ

βαα

α

α

αβ

α

µ

σερσ r

r

St

C

rr

kCC
C

rr
TD  (39) 



5th International Conference on Multiphase Flow, ICMF’04 
Yokohama, Japan, May 30–June 4, 2004 

Paper No. 392 

- 9 - 

Hence, the FAD+EVH model for dispersed two-phase flow (27) is equivalent to a Lopez de 
Bertodano model with Stokes number dependent coefficient CTD. However, the Stokes 
number dependency is not the same as that proposed by Lopez de Bertodano (1998). 

Carrica Model 

The model of Carrica et al (1999) was developed for dilute poly-dispersed bubbly flow, for 
bubbles sufficiently small that the Stokes drag law could be applied, βRe/24=DC . Denoting 

the continuous phase by α = 1, and the dispersed phases by β = 2,…,ND, the model takes the 
form:  

 β
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,     β = 2,…,ND (40) 
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    (41) 

The Carrica model was evaluated in some detail by Moraga et al., 2001, 2003. Satisfactory 
agreement was found with DNS data for dilute bubbly flows, and for a bubbly mixing layer. 
Moraga et al. also noted the equivalence between this model and a variable coefficient Lopez 
de Bertodano model. 

Comparing the Carrica model equations (40) and (41) with the FAD+EDH model equations 
(28) and (29 for 2-phase flow, we see that they are identical in the limit 0→βr . So the FAD 

model reduces to the model of Carrica et al. in the case of 2-phase flow, for small dispersed 
phase volume fractions and for small particle diameters. Consequently, the FAD model may 
be considered to be a generalization of the Carrica model, valid for larger dispersed phase 
volume fractions, and for general drag laws.  

Note that the poly-dispersed forms of the FAD and Carrica model differ in their use of 
volume fraction gradients. The Carrica model assumes that the total turbulent dispersion force 
acting on each dispersed phase is proportional to the volume fraction gradient of that phase 
only. The FAD+EDH model for poly-dispersed flow (26) has equal and opposite 
contributions for each continuous-dispersed phase pair, proportional to a difference of volume 
fraction gradients. 
 

5. Validation 
In section 4, it has been shown that the FAD model is equivalent to several other models in 
the literature, in the limit of low dispersed phase volume fraction. Hence, all validation work 
reported for these models is also applicable to the FAD model. Here we present two further 
validation exercises, one for liquid-solid flows, and another for bubbly flows. All simulations 
have been performed using user-fortran implementations of the FAD Model in the 
commercial CFD package CFX-5.6 (2003). 

Both validation exercises employed either the standard k-ε model, or the Shear Stress 
Transport (SST) turbulence model (Menter 1994) for the continuous phase. Particle induced 
turbulence was accounted for following the enhanced eddy viscosity model of Sato et al, 1975 
and 1981. The dispersed phase turbulence was treated assuming a simple algebraic 
relationship between the dispersed phase and continuous phase kinematic eddy viscosities: 

 
νβ

α
β σ

νν t
t =   (42) 

where the eddy viscosity Prandtl number σνβ was set equal to unity. Also, the turbulent 
Prandtl number for volume fraction, σrα, was set equal to unity in all calculations.  
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5.1 Validation for bubbly flows in a vertical pipe  

Experimental set up and test case definitions  

The validation of the FAD model for gas-liquid flows was based on the Forschungszentrum 
Rossendorf (FZR) wiremesh sensor measurement database for upward air-water flows in a 
vertical pipe established at the MT-Loop test facility. The primary purpose of this experiment 
is to permit the validation of models for interfacial forces implemented in CFD codes. 

As is illustrated in Fig. 5.1(a), the test section is 4 m long and has an inner diameter 51.2 mm. 
The Loop was operated under atmospheric pressure and a constant temperature of 30C. 
Measurements were carried out for stationary flows of various air-water superficial velocity 
ratios at 10 different cross sections located between L/ D = 0.6 and 59.2 from the gas injection 
using a wiremesh sensor with 24 x 24 electrodes. Careful measures were taken to ensure 
axial-symmetry of the macroscopic flow. Details about the experimental set up and data 
accuracy are provided in Prasser et al., 2003. For the present validation we defined a number 
of test cases in the bubbly flow regime with wall gas peak and compared the numerical results 
obtained using the FAD and RPI models against the measurement data at the top 
measurement cross section L/D = 59.2. Numerical experiments (Shi et al., 2004) showed that 
the gas concentration distribution at this cross section is independent of the inlet velocity and 
gas volume fraction profile. The test cases, together with the inlet superficial velocities of 
both phases corresponding to the normal condition and the mean bubble diameter measured at 
L/ D = 59.2, needed as input parameters for the numerical simulation, are listed in Fig. 5.1(a). 

  

             Fig. 5.1(a) MT-Loop Test facility and a list of test cases. 

Numerical settings  

The numerical simulation was based on the CFX two-fluid model. Both fluids were assumed 
to be incompressible and the bubble diameter was assumed to be constant within the total 
computational domain. The interfacial forces are considered by the following models, the 
Grace model for the drag force (Grace and Weber, 1982), the Tomiyama correlations for the 
lift and wall lubrication force, (Tomiyama et al 1995, 1998), and either the FAD or the RPI 
model for the turbulence dispersion force. Here, the ‘RPI model’ refers to the constant 
coefficient Lopez de Bertodano model, eq. (37). The added mass force was neglected for the 
stationary flow considered here.  

A detailed discussion on the lift and lubrication forces is given in Shi at al 2004. Here, we 
concentrate on comparisons between the turbulence dispersion models. Shi et al 2004 also 

Test  
dp 

[mm] 

Ul,sup 

[m/s] 

Ug,sup 

[m/s] 

017 4.8 0.405 0.0040 

019 4.8 1.017 0.0040 

038 4.3 0.225 0.0096 

039 4.5 0.405 0.0096 

040 4.6 0.641 0.0096 

041 4.5 1.017 0.0096 

042 3.6 1.611 0.0096 

074 4.5 1.017 0.0368 
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considered comparisons of both the k-ε and SST turbulence models. It was concluded there 
that the SST model yielded superior predictions to the k-ε model. All comparisons here 
employ the SST model. 

A computational domain consisting of a 3 degree sector of the pipe with the symmetry 
condition on both sector faces was applied in the simulation. A uniform volume fraction 
distribution was assumed for both phases at the inlet together with a 1/7-th power inlet 

velocity profile, ( ) 7/1*
0 1224.1 rUU in −= , where U0 is the mean value, for the liquid, and a 

uniform profile for the gas phase. The radial velocity was assumed to be null. In addition, a  
medium turbulence intensity (5%) was assigned there. The outlet was located at 3.3m away 
from the inlet, where an averaged static pressure equal to the atmospheric pressure P0 was 
assigned. The pressure field was initialized using the expression )3.3(0 LgPP l −+= ρ . 

Details on the convergence error, grid dependence of the results and the inlet condition effect 
are reported in Shi et al (2004). 

Evaluation and discussion  

Calculation was carried out using the FAD and the RPI model for the turbulence dispersion 
force, respectively. The results for the normalized air volume fraction, which is defined by 
equation (43), were compared at the cross section chosen for validation, L/D = 59.2.  

 
0,

*

g

g
g α

α
α = , with ( ) **

1

0

*
0, 2 drrrgg 	= αα  (43) 

Computational results are displayed in Fig. 5.1(b), together with the corresponding 
measurement data. It can be observed that all numerical results based on the FAD model 
agree fairly well with the experimental data. It is observed from Fig. 5.1(b) that the gas 
volume fraction obtained using the RPI model is consistently lower in the core region than 
those based on the FAD model. This indicates a stronger turbulence dispersion force given by 
the latter. The difference of the results is not essential in all cases. Nevertheless, the FAD 
model leads to much better agreements with the experimental data in certain cases, such as 
FZR-074, though the core gas concentration is still underpredicted. This deviation can be 
reduced by using two fluids for the gas phase, namely separating the larger bubbles (negative 
lift force) from the small ones. This will be the subject of future investigation.  

Similar to the observation to FZR-074 and FZR-042, the RPI model overpredicted the wall 
gas peak, and at the same time underpredicted the core gas concentration in all cases. In order 
to make a direct comparison for both models, the corresponding turbulence dispersion force 
coefficient of the FAD model was estimated for all test cases using eq. (39) and is plotted in 
Fig. 5.1(c) together with a constant coefficient CTD = 0.35 used in the RPI model. The results 
clearly show that the turbulence dispersion force given by the RPI model is much too weak, 
except in the near-wall region. Moreover, Fig. 5.1(c) also shows that a constant coefficient 
CTD as assumed in the RPI model is not realistic. Due to this oversimplification, the RPI 
model does not take a number of physical dependencies appearing in eq. (39) into account. In 
addition, it is interesting to note that CTD decreases with increasing superficial velocity of the 
continuous phase. This is because the bubble response time τd is similar for all test cases due 
to their similar dp, whereas the turbulence time scale τt decreases with increasing flow 
Reynolds numbers. 

Despite the acceptable agreements between numerical results and measurements achieved 
using the above non-drag force models, it is necessary to address the limitation of the present 
study. First, bubble coalescence and breakup was neglected in this investigation. Larger 
bubbles which receive a negative lift force were also not distinguished from small bubbles. 
This might be the main reason responsible for the deviations observed in the core region. In 
addition, the numerical results indicate a bubble free region in the wall proximity, which is 
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different from the experimental data. A number of causes can have contributed to this 
deviation, e.g., the decreased measurement accuracy in the wall proximity and the inaccuracy 
of the wall lubrication force models.  

 

            Fig. 5.1 (b) Comparisons between the RPI and FAD model. 
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Fig. 5.1(c) Equivalent CTD coefficient of FAD model in comparison with RPI Model. 

5.2 Liquid-Solid Flows in Mixing Vessels 

CFD results are presented for one of the experimental cases investigated by Micheletti 2003. 
The system comprises a single six-blade Rushton disc turbine in a cylindrical mixing vessel of 
diameter, T, and height, H, 290mm, with four wall-mounted full-length baffles of radial 
extent T/10. Details of the specific case which is simulated are: 

• Impeller clearance - C=0.33T 
• Impeller speed - 800rpm 
• Particles - glass ballotini, diameter 600-710µm, average volume fraction Cav=5.5% 
• Continuous-phase fluid - tap water 

 

The CFX simulation uses the following set-up: 
• Wen Yu (1966) correlation for interphase drag coefficient. This model employs the 

standard Schiller-Naumann drag model with volume fraction corrections to account 
for hindered settling effects 

• FAD model for turbulent dispersion.  
• SST turbulence model (Menter 1994) for the continuous phase, enhanced by Sato and 

Sekoguchi 1975 model for particle-induced turbulence. 
• Dispersed-phase zero-equation turbulence model for the particle phase. 
• High Resolution differencing on all equations 
• Hexahedral mesh, with 211640 elements, 229565 nodes. The symmetry of the system 

is exploited such that only one half of the vessel is simulated. 
• Steady-state Frozen Rotor model 
• The vessel is modeled in the with-lid condition, with a no-slip wall used at the upper 

boundary. 

 

Micheletti’s experimental results are presented in terms of particle volume fractions on two 
vertical lines through the vessel, one at r = 0.25T, the other at r = 0.45T, located on a plane 
mid-way between an adjacent pair of baffles. The experimental data are obtained using a 
conductivity probe with 10mm square electrodes mounted 10mm apart (Micheletti et al 
2003). As there is no information available from the experimental study on the size 
distribution of particles within the specified range of 600-710µm, simulation results are 
presented for mono-disperse systems at the two extremes of the size range. 

The measuring location at r = 0.25T lies within the rotating part of the computational domain. 
Since the steady-state Frozen Rotor model does not produce time-resolved results, a 
circumferential average of the predicted volume fraction is calculated. This is assumed to 
provide a fair representation of the time average of the periodic variation in volume fraction 
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experienced by the probe. Minimum and maximum values of the particle volume fractions 
within a region ±5mm from the stated data point are included. This dimension is 
representative of the size of the conductivity probe used in the experimental work.  

 

At r = 0.45T, two sets of results are presented. One set lies on an xy-plane, which is located 
mid-way between baffles and is aligned with one of the impeller blades; the other is on an xz- 
plane, which is located mid-way between baffles and passes mid-way between a pair of 
impeller blades. In all of the volume fraction profile graphs, the discrete points are the 
experimental data, whilst the three solid lines are the minimum, average and maximum values 
of the CFD results. 

The results at r = 0.25T are presented in Figures 5.2(a) and 5.2(b) for the 600µm and 710µm 
particles respectively. The predictions are in good agreement with the experimental data, and 
indicate that the particle distribution in this region is relatively insensitive to particle size. 

Figures 5.2(c) and 5.2(d) contain the results at r = 0.45T for 600µm particles plotted on the 
xy- and xz- planes between baffles described above. Figures 5.2(e) and 5.2(f) present the same 
data for the 710µm particles. The predictions here consistently under-predict the particle 
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volume fractions recorded experimentally, though the correct trend is predicted. It is notable 
that there are differences between the predicted results on the two plotting locations. 

Figures 5.2(g) and 5.2(h) show contours of particle volume fraction, normalized by the mean 
volume fraction. Figure 11 presents the full range of values within the plane, whilst Figure 12 
uses a reduced range of 0 to 3, to emphasize the detail near the walls. In the region below the 
impeller, the solids concentration attains a maximum value of ~60%. The CFD model does 
not include any solids pressure terms to account for particle-particle impacts and may 
therefore be expected to over-predict the solids loading in regions where sedimentation 
occurs. This accumulation of solids at the base of the vessel will therefore lead to a lower 
mean concentration in the remainder of the vessel. This may be one explanation for the lower 
prediction of particle volume fraction at the vessel wall. 

 

6. Conclusions 
The Favre Averaged Drag Model has been shown to generalize most current models of 
turbulence dispersion, and to possess a wide degree of universality. Consequently, it has been 
implemented as the default model of choice for turbulence dispersion in CFX-5.7 (2004).  

Many topics remain for further investigation. For example: 

• The current model assumes a linear dependence of drag force on slip velocity, as far as 
the averaging procedure is concerned. How is the model affected by generalizing this 
to take into account dependence of Dαβ (eq. 16) on slip velocity? 

• Similarly, how is the model changed by taking into account volume fraction 
dependence of the drag coefficient, for example, power law corrections at high 
dispersed phase volume fractions? 

• In its general form (eq. 21), the FAD model is applicable, in principal, to second order 
closure models for turbulence, and to separated as well as dispersed multi-phase flows. 

We believe such further investigations will provide further fruitful insights into turbulent 
multiphase flows. 
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