
30. June 2004 Joined FZR & CFX Workshop on Multiphas e Flows: Simulation, 
Experiment & Application, Dresden, Germany

Slide 1

Non-drag Forces in Gas-Liquid 
Bubbly Flows and Validation of 

Existing Formulations

(*) ANSYS Germany
D-83624 Otterfing
Thomas.Frank@ansys.com

Th. Frank *, J.-M. Shi +, E. Krepper +

(+) FZ Rossendorf
Inst. of Safety Research
D-01328 Dresden



30. June 2004 Joined FZR & CFX Workshop on Multiphas e Flows: Simulation, 
Experiment & Application, Dresden, Germany

Slide 2

Contents

• Introduction
• Non-drag forces in bubbly flows

– Lift force
– Wall lubrication force
– Turbulent dispersion force

• Model formulations
• Validation with experimental data

– Steady state FZR-074 test case
– Further test cases

• Summary & Discussion



30. June 2004 Joined FZR & CFX Workshop on Multiphas e Flows: Simulation, 
Experiment & Application, Dresden, Germany

Slide 3

• Finely disperse (121)
• Bubbly flow

– Void maximum near the 
wall (039)

– Transition region (083)
– Centred void fraction 

maximum (118)
– Centred void fraction 

maximum bimodal (129)

• Slug flow (140)
• Annular flow (215)

Different Types of Bubbly Flows

Test case FZR-074: 
dilute bubbly flow with near wall maximum of void f raction

Experiments by Prasser et al., FZR
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Eulerian Modelling of Multiphase Flow

Averaged conservation equations
• Mass, momentum, energy equation for each phase
• turbulence model equations (e.g. k-εεεε / k-ωωωω SST model)

( ) ( ) 0k k k k kr r
t

ρ ρ∂ + ∇ =
∂

U

( ) ( ) ( )k
k k k k k k k k k k kr r r P r

t
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∂
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• additional interfacial forces important for accurat e predictions of 
e.g. gas-liquid flows

• non-drag force terms need empirical closure

� � � � �
drag lift turbulentwall virtual mass

dispersionlubrication

L WL Tk D D VM= + + + +F F FI F F
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Additional lateral forces –
Lift force

Physical mechanism:
• acts on particles, droplets and 

bubbles in shear flows
– due to asymmetric wake
– due to deformed asymmetric particle 

shape

• sign change of bubble lift indicated 
by measurements

• found in DNS results (Ervin & 
Trygvasson)

large
ellipsoidal 
bubble

lift 
force

small
spherical 
bubble

lift 
force

fluid vel.
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Additional lateral forces –
Lift force

Modelling:

Many available correlations for

( )L L G L L G LC r ρ= − ×∇×F U U U

Solid Particles:
• McLaughlin 
• Saffman & Mei
• Moraga et al. (asym. wake)

Bubbles:
• Mei & Klausner
• Legendre & Magnaudet
• Tomiyama (shape deform.)

(Re , Re , )L L PC C Eo∇=
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Tomiyama’s Lift force correlation
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Antal’s model (1991):
1 2

1 2

max 0,

0.01 ; 0.05

W W
wall

P W

W W

C C
C

d y

C C

� �
= +� �
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( ) 2

WL wall G L rel rel W W WC r ρ= − −F U U n n n�

Additional lateral forces –
Wall lubrication force

Surface tension prevents bubbles from 
approaching solid walls very close
ààà à near wall area of low gas void fraction
ààà à modelled by a wall force, pushing 

bubbles away from walls

wall lubr.
force

fluid vel.

gas void fraction
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Tomiyama‘s wall lubrication force 
model

Tomiyama’s model (1998):
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Deficiencies of prior wall lubrication 
force models

Antal / CFX-5.7:
– FW ~ 1 / yW

– geometry independent
– FW too small to 

balance F L and FTD in 
some validation cases

– small influence on flow 
by change in model 
parameters

Tomiyama:
– FW ~ 1 / yW

2

– amplitude depends 
on Eo

– contains the pipe 
diameter 
ààà à not applicable to 

complex geometry
– no adjustable model 

parameter 
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Proposed modified wall lubrication 
force formulation

Proposed modified formulation:

• geometry independent formulation
• preserved dependency of amplitude on Eo number 

(from Tomiyama’s model)
• variable potential law   FW ~ 1 / yW

p with : p~1.5-2
• CWC – cut-off coefficient;   C WD – damping coefficient

• recovers the behavior of Tomiyama’s model with:
CWC=10.0; CWD=6.8;       p=1.7
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Comparison of wall lubrication force 
models

e.g. FZR-074 test case
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CTD≅≅≅≅0.1,…,0.5 (?)

à Equalization of the gas volume    
fraction distribution

à CTD depends on Stokes number
à different attempts for accurate 

derivation of C TD models:
• Lahey et al. (1993) 
• Lopez de Bertodano (1998)
• Drew & Passman (1999, 2001)
• Moraga et al. (2003), …

TD TD L L GC K rρ= − ∇F

Additional lateral forces: 
Turbulent dispersion force

Drew & Lahey (RPI model) formulation:

turb. 
dispersion

force

fluid vel.

gas void fraction



30. June 2004 Joined FZR & CFX Workshop on Multiphas e Flows: Simulation, 
Experiment & Application, Dresden, Germany

Slide 14

TD TD L L GC k rρ= − ∇F

Turbulent dispersion force –
The Favre Averaged Drag (FAD) model

Issa & Gosman, Carrica et al. and Burns (FAD model):

1 1 3 1

4 1
LG tL relL

TD D Grace
rL L L rL P LL G G

C C Uk
C C

d kr r r
µ ν

σ ρ ε σ
 


= + =� �
−� 	

• derivation of F TD from double averaging of the interphase drag 
term in momentum equation

• general form of turbulent dispersion force:

• for disperse two-phase flow (r G+rL=1) we can establish 
equivalence relation to the Drew & Lahey (RPI) model : 

t
TD

r

r r
D A

r r
βα α

αβ αβ
α β α

ν
σ

 
∇ ∇= −� �
� �
� 	

F



30. June 2004 Joined FZR & CFX Workshop on Multiphas e Flows: Simulation, 
Experiment & Application, Dresden, Germany

Slide 15

Additional lateral forces: 
The virtual mass force

• accounts for the acceleration of the fluid mass 
surrounding the bubble/particle

• important for transient / strongly accelerated gas- liquid 
flows, where ρρρραααα/ρρρρββββ<<1

• CVM=0.5 (analytical) or dependent on acceleration 
number A C (e.g. Odar&Hamilton, Cook&Harlow, 
Niemann&Laurien)

G L
VM VM G L

D D
C r

Dt Dt
ρ  
= − −� �
� 	

U U
F
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Force balance analysis for a generic 
3-phase test case

• generic 3-phase test case ààà à Virtual mass force neglectable
• FAD TD and lift forces of opposite sign for both bu bble size classes
• VM force neglectable; W.L.F. very small for 2 nd disperse phase
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Two-phase bubbly flow measurements 
at FZR – the MT-Loop test facility

Sparger

Wire-

mesh

sensor

MT-Loop test facility at FZR
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Validation test case definition

• MT-Loop test matrix 
• validation focused on FZR-074; many other test cases investigated
• FZR-074: j L=1.0167m/s, j G=0.0368m/s, d P=4.8-5.2mm
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Numerical meshes - 3d grid topology 
(2nd grid level of refinement)
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The 3d grid hierarchy

• Scaling factor between grids is 2 
(equal to ~2 1/3 in each coordinate direction)

• ICEM/CFD generated 3d grids with edge parameters:
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Best Practice Guidelines (BPG) conform 
study: Wall refinement and cell aspect ratios
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BPG conform study: 
Wall function characteristics (SST model)
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BPG conform study: 
Iteration error

• dependence of gas hold-up vs. convergence criteria;  
grid dependence; ∆∆∆∆t=0.01s, 750 iterations
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BPG conform study: Convergence in 
dependence on physical time scale

• dependence of gas hold-up on physical time scale; 

convergence & grid dependence
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BPG conform study: Convergence in 
dependence on additional physical models

• dependence of gas hold-up on physical time scale
• convergence depends on setup of non-drag forces
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BPG conform study: 
Computing resource requirements
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Comparison of FAD vs. RPI turbulent 
dispersion models - I

• Simulation of Air-Water 2-phase flow; FZR-074
• Turbulent dispersion force : RPI TD (C TD=0.5)   vs. FAD TD
• k-εεεε vs.   SST turbulence model

Grace drag

Tomiyama lift

Tomiyama W.L.F.

Sato model

∆∆∆∆t=0.002s

2500 Iterations
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Comparison of FAD vs. RPI turbulent 
dispersion models - II

• Simulation of Air-Water 2-phase flow; FZR-074
• Turbulent dispersion force : RPI TD (C TD=0.5)   vs. FAD TD
• k-εεεε vs.   SST turbulence model

Grace drag

Tomiyama lift

Antal W.L.F.

Sato model

∆∆∆∆t=0.002s

2500 Iterations
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Validation & Model parameter variation – I
Test case FZR-074

• investigation of grid dependence of the solution (3d grid hierarchy)
• solution converges with grid refinement
• grid independent solution reached on 3 rd grid level

Grace drag

Tomiyama lift

Tomiyama W.L.F.

FAD TD

Sato model

SST turb. model

∆∆∆∆t=0.002s

2500 Iterations
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Validation & Model parameter variation – II
Test case FZR-074

• grid independent solution still not reached on 4 th grid level
• volume fraction wall peak predicted too close to th e wall
• amplitude of wall peak too high; Antal W.L.F. too w eak

Grace drag

Tomiyama lift

Antal W.L.F.

FAD TD

Sato model

SST turb.model

∆∆∆∆t=0.002s

2500 Iterations
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Validation & Model parameter variation – III
Test case FZR-074

• comparison of wall lubrication force models
• 2nd grid level of mesh refinement
• Tomiyama and modified W.L.F. give almost identical results

Grace drag

Tomiyama lift

FAD TD

Sato model
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Other test cases: FZR-038 – FZR-042, 
increasing water superficial velocity
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Accuracy of measurements and 
numerical predictions

• measurement accuracy depends on wire mesh 
sensor resolution and measurement errors

• numerical simulation is subject to round-off, 
iteration, solution and model errors

ààà à good agreement between experiments & CFD

Figures by courtesy of Dr. E. Krepper, FZR
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Summary & Discussion

• Non-drag forces have been implemented in CFX-5.6/5.7

• Model closure correlations for disperse bubbly and particle flows 
available via User Fortran routines

• Tomiyama lift and wall lubrication force formulations result in 
good agreement of CFD results with FZR MT-Loop meas urements

• Modified W.L.F. formulation gives geometry independent model 
with same accuracy

• Validation carried out for:

‡ MT-Loop test matrix with different air/water superf icial velocities

‡ upward & downward flows; transient change of fluid mass flow

‡ bubble diameter range d P=0.5,…,10.0 mm leading to wall and core 
peaking in the volume fraction profiles

‡ polydispersed air-water flows with up to 5 disperse  phases
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Summary & Discussion (cont.)

• Turbulence modeling has significant impact on phase volume 
fraction distribution
ààà à best results with SST turb. model and FAD TD model
ààà à FAD TD model is a significant improvement over RPI model
ààà à FAD TD model became default in CFX-5.7

• Further validation: FZR TOPFLOW experiments (D=194.1 mm)

• Further development:

‡ higher volume fractions 

‡ breakup & coalescence

‡ inhomogeneous MUSIG model for polydispersed flows

‡ phase change models (boiling, condensation)
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Thank you !


