

Non-drag Forces in Gas-Liquid Bubbly Flows and Validation of Existing Formulations

(*) ANSYS Germany D-83624 Otterfing Thomas.Frank@ansys.com

CFX

CEM CFD

(+) FZ Rossendorf Inst. of Safety Research D-01328 Dresden

Contents

- Introduction
- Non-drag forces in bubbly flows
 - Lift force
 - Wall lubrication force
 - Turbulent dispersion force
- Model formulations
- Validation with experimental data
 - Steady state FZR-074 test case
 - Further test cases
- Summary & Discussion

Different Types of Bubbly Flows

- Finely disperse (121)
- Bubbly flow
 - Void maximum near the wall (039)
 - Transition region (083)
 - Centred void fraction maximum (118)
 - Centred void fraction maximum bimodal (129)
- Slug flow (140)
- Annular flow (215)

Test case FZR-074:

Experiments by Prasser et al., FZR

dilute bubbly flow with near wall maximum of void fraction

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Eulerian Modelling of Multiphase Flow

Averaged conservation equations

- Mass, momentum, energy equation for each phase
- turbulence model equations (e.g. k-ε / k-ω SST model)

$$\frac{\partial}{\partial t} (\rho_k r_k) + \nabla (\rho_k r_k \mathbf{U}_k) = 0$$

$$\frac{\partial}{\partial t} (\rho_k r_k \mathbf{U}_k) + \nabla \cdot (\rho_k r_k \mathbf{U}_k \mathbf{U}_k) = -r_k \nabla P - \nabla \cdot (r_k \Pi^k) + \mathbf{F}_k + \mathbf{I}_k$$

$$\mathbf{I}_k = \mathbf{F}_D + \mathbf{F}_L + \mathbf{F}_{WL} + \mathbf{F}_{TD} + \mathbf{F}_{VM}$$

$$\underset{\text{lubrication}}{\text{figures}} + \mathbf{F}_{U} + \mathbf{F}_{VM}$$

- additional interfacial forces important for accurate predictions of e.g. gas-liquid flows
- non-drag force terms need empirical closure

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Additional lateral forces – Lift force

Physical mechanism:

- acts on particles, droplets and bubbles in shear flows
 - due to asymmetric wake
 - due to deformed asymmetric particle shape
- sign change of bubble lift indicated by measurements
- found in DNS results (Ervin & Trygvasson)

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Additional lateral forces – Lift force

Modelling:

$$\mathbf{F}_{L} = C_{L} r_{G} \rho_{L} (\mathbf{U}_{L} - \mathbf{U}_{G}) \times \nabla \times \mathbf{U}_{L}$$

Many available correlations for $C_L = C_L(\operatorname{Re}_P, \operatorname{Re}_\nabla, Eo)$

Bubbles:

- Mei & Klausner
- Legendre & Magnaudet
- Tomiyama (shape deform.)

Solid Particles:

- McLaughlin
- Saffman & Mei
- Moraga et al. (asym. wake)

Tomiyama's Lift force correlation

8

10

$$C_{L} = \begin{cases} \min \left[0.288 \tanh(0.121 \cdot \text{Re}_{p}), f(Eo_{d}) \right] & Eo_{d} < 4 \\ f(Eo_{d}) = 0.00105 Eo_{d}^{3} - 0.0159 Eo_{d}^{2} - 0.0204 Eo_{d} + 0.474 & 4 \le Eo_{d} \le 10.0 \\ -0.27 & Eo_{d} > 10.0 \end{cases}$$

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Slide 7 **Experiment & Application, Dresden, Germany**

30. June 2004

Additional lateral forces – Wall lubrication force

Experiment & Application, Dresden, Germany

Tomiyama's wall lubrication force model

Tomiyama's model (1998): $C_{wall} = C_W(\text{Eo}) \cdot \frac{d_P}{2} \left(\frac{1}{y_W^2} - \frac{1}{(D - y_W)^2} \right)$ $Eo = \frac{g(\rho_F - \rho_P)d_P}{\sigma}$ $V(Eo) = \begin{cases} e^{-0.933Eo+0.179} & 1 \le Eo \le 5 \\ 0.007Eo+0.04 & 5 \le Eo \le 33 \\ 0.179 & 33 < Eo \end{cases} \stackrel{0.4}{}_{0.3}$ $C_w(Eo) =$ ---- Exponential expression --- Original Linear Expression ----- Changed Linear Expression ---- Constant Expression geometry dependend model due to pipe 0 20 30 0 10 40 diameter D ! Eotvos number [-]

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Deficiencies of prior wall lubrication force models

Antal / CFX-5.7:

- $-F_{w} \sim 1/y_{w}$
- geometry independent
- F_W too small to balance F_L and F_{TD} in some validation cases
- small influence on flow by change in model parameters

Tomiyama:

- $-F_{W} \sim 1/y_{W}^{2}$
- amplitude depends on Eo
- contains the pipe diameter
 - à not applicable to
 - complex geometry
- no adjustable model parameter

Proposed modified wall lubrication force formulation

Proposed modified formulation:

$$C_{wall} = C_W(\text{Eo}) \cdot \max \begin{cases} 0, \frac{1}{C_{WD}} \cdot \frac{1 - \frac{y_W}{C_{WC}d_P}}{y_W \cdot \left(\frac{y_W}{C_{WC}d_P}\right)^{p-1}} \end{cases}$$

- geometry independent formulation
- preserved dependency of amplitude on Eo number (from Tomiyama's model)
- variable potential law $F_w \sim 1 / y_w^p$ with : p~1.5-2
- C_{wc} cut-off coefficient; C_{wp} damping coefficient
- recovers the behavior of Tomiyama's model with:

C_{WC}=10.0; C_{WD}=6.8; p=1.7

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Comparison of wall lubrication force models

Additional lateral forces: Turbulent dispersion force

Drew & Lahey (RPI model) formulation:

 $\mathbf{F}_{TD} = -C_{TD}\rho_L K_L \nabla r_G$

C_{TD}≅0.1,...,0.5 (?)

- à Equalization of the gas volume fraction distribution
- à C_{TD} depends on Stokes number
- à different attempts for accurate derivation of C_{TD} models:
 - Lahey et al. (1993)
 - Lopez de Bertodano (1998)
 - Drew & Passman (1999, 2001)
 - Moraga et al. (2003), ...

Slide 13

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Turbulent dispersion force – The Favre Averaged Drag (FAD) model

Issa & Gosman, Carrica et al. and Burns (FAD model):

- derivation of F_{TD} from double averaging of the interphase drag term in momentum equation
- general form of turbulent dispersion force:

$$\mathbf{F}_{TD} = D_{\alpha\beta} A_{\alpha\beta} \frac{V_{t\alpha}}{\sigma_{r\alpha}} \left(\frac{\nabla \overline{r_{\beta}}}{\overline{r_{\beta}}} - \frac{\nabla \overline{r_{\alpha}}}{\overline{r_{\alpha}}} \right)$$

 for disperse two-phase flow (r_G+r_L=1) we can establish equivalence relation to the Drew & Lahey (RPI) model:

$$\mathbf{F}_{TD} = -C_{TD}\rho_L k_L \nabla r_G$$

$$C_{TD} = \frac{C_{\mu}}{\sigma_{rL}} \frac{\overline{C}_{LG}}{\rho_L} \frac{k_L}{\varepsilon_L} \left(\frac{1}{\overline{r_L}} + \frac{1}{\overline{r_G}}\right) = \frac{3}{4} C_D \Big|_{Grace} \frac{V_{tL}}{\sigma_{rL}} \frac{U_{rel}}{d_P k_L} \frac{1}{1 - \overline{r_G}}$$

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Additional lateral forces: The virtual mass force

Slide 15

 accounts for the acceleration of the fluid mass surrounding the bubble/particle

$$\mathbf{F}_{VM} = -C_{VM} r_G \rho_L \left(\frac{D \mathbf{U}_G}{D t} - \frac{D \mathbf{U}_L}{D t} \right)$$

- important for transient / strongly accelerated gas-liquid flows, where $\rho_{\alpha}/\rho_{\beta}$ <<1
- C_{VM}=0.5 (analytical) or dependent on acceleration number A_C (e.g. Odar&Hamilton, Cook&Harlow, Niemann&Laurien)

Force balance analysis for a generic 3-phase test case

- generic 3-phase test case à Virtual mass force neglectable
- FAD TD and lift forces of opposite sign for both bubble size classes
- VM force neglectable; W.L.F. very small for 2nd disperse phase

Two-phase bubbly flow measurements at FZR – the MT-Loop test facility

Validation test case definition

- MT-Loop test matrix
- validation focused on FZR-074; many other test cases investigated
- FZR-074: j_L=1.0167m/s, j_G=0.0368m/s, d_P=4.8-5.2mm
 1 22 33 44 55 66 77 88 99 110121132143 finely dispersed bubbly

Numerical meshes - 3d grid topology (2nd grid level of refinement)

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

The 3d grid hierarchy

- Scaling factor between grids is 2 (equal to ~2^{1/3} in each coordinate direction)
- ICEM/CFD generated 3d grids with edge parameters:

grid level	а	b	С	d	е	No. of CV's	b
1	6	6	13	26	56	15.744	a c
2	8	8	16	30	70	32.000	
3	10	10	20	39	89	64.000	
4	13	13	25	47	111	129.402] ↑ e
5	16	16	32	60	140	256.000	
6	20	20	40	78	178	512.000	

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany Slide 20

Х

Best Practice Guidelines (BPG) conform study: Wall refinement and cell aspect ratios

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Sli Experiment & Application, Dresden, Germany

BPG conform study: Wall function characteristics (SST model)

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Slid Experiment & Application, Dresden, Germany

BPG conform study: Iteration error

 dependence of gas hold-up vs. convergence criteria; grid dependence; ∆t=0.01s, 750 iterations

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

BPG conform study: Convergence in dependence on physical time scale

 dependence of gas hold-up on physical time scale; convergence & grid dependence

Experiment & Application, Dresden, Germany

BPG conform study: Convergence in dependence on additional physical models

- dependence of gas hold-up on physical time scale
- convergence depends on setup of non-drag forces

strong convergence criterion satisfied (max. air momentum residuals < 1.e-5; ~4000 iterations)

gas hold-up reaches steady state; air mass flow imbalance < 0.008% (~1200 iterations)

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

BPG conform study: Computing resource requirements

	Grid Level	CV's	Factor	Procs.	CPU-h	Factor
	1	15.744	1.00	1 (HPC)	6.38 h	1.00
	2	32.000	2.03	1 (HPC)	11.30 h	1.77
	3	64.000	4.07	2 (HPC)	25.82 h	4.05
I	4	129.402	8.22	2 (HPC)	52.75 h	8.27
	5	256.000	16.26	3 (NEC)	100.52 h	15.75
	6	512.000	32.52			

Comparison of FAD vs. RPI turbulent dispersion models - I

- Simulation of Air-Water 2-phase flow; FZR-074
- Turbulent dispersion force : RPI TD (C_{TD} =0.5) vs. FAD TD
- k-ε vs. SST turbulence model

Comparison of FAD vs. RPI turbulent dispersion models - II

- Simulation of Air-Water 2-phase flow; FZR-074
- Turbulent dispersion force : RPI TD (C_{TD} =0.5) vs. FAD TD
- k-ε vs. SST turbulence model

Experiment & Application, Dresden, Germany

Validation & Model parameter variation – I Test case FZR-074

- investigation of grid dependence of the solution (3d grid hierarchy)
- solution converges with grid refinement
- grid independent solution reached on 3rd grid level

Validation & Model parameter variation – II Test case FZR-074

- grid independent solution still not reached on 4th grid level
- volume fraction wall peak predicted too close to the wall
- amplitude of wall peak too high; Antal W.L.F. too weak

Validation & Model parameter variation – III Test case FZR-074

- comparison of wall lubrication force models
- 2nd grid level of mesh refinement
- Tomiyama and modified W.L.F. give almost identical results

Other test cases: FZR-038 – FZR-042, increasing water superficial velocity

Accuracy of measurements and numerical predictions

- measurement accuracy depends on wire mesh sensor resolution and measurement errors
- numerical simulation is subject to round-off, iteration, solution and model errors
- à good agreement between experiments & CFD

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany

Slide 33

(IFX)

Summary & Discussion

- Non-drag forces have been implemented in CFX-5.6/5.7
- Model closure correlations for disperse bubbly and particle flows available via User Fortran routines
- Tomiyama lift and wall lubrication force formulations result in good agreement of CFD results with FZR MT-Loop measurements
- Modified W.L.F. formulation gives geometry independent model with same accuracy
- Validation carried out for:
 - **t** MT-Loop test matrix with different air/water superficial velocities
 - **‡** upward & downward flows; transient change of fluid mass flow
 - bubble diameter range d_P=0.5,...,10.0 mm leading to wall and core peaking in the volume fraction profiles
 - **‡** polydispersed air-water flows with up to 5 disperse phases

```
30. June 2004
```

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Slide 34 Experiment & Application, Dresden, Germany

Summary & Discussion (cont.)

- Turbulence modeling has significant impact on phase volume fraction distribution
 - à best results with SST turb. model and FAD TD model
 - à FAD TD model is a significant improvement over RPI model
 - à FAD TD model became default in CFX-5.7
- Further validation: FZR TOPFLOW experiments (D=194.1 mm)
- Further development:
 - **‡** higher volume fractions
 - ‡ breakup & coalescence
 - **‡** inhomogeneous MUSIG model for polydispersed flows
 - **‡** phase change models (boiling, condensation)

30. June 2004

Joined FZR & CFX Workshop on Multiphase Flows: Simulation, Experiment & Application, Dresden, Germany