Development and Application of BPG in the EU-Project ECORA for the Evaluation of CFD-Simulations in NRS

Thomas Frank
ANSYS Germany

thomas.frank@ansys.com
Contents

• CFD Quality
• Overview of Best Practice Guidelines (BPG)
• Error estimation techniques
• Practicality considerations
• Review & recommendations
• Summary
Use of CFD results for safety-critical analyses

Requirements:
- Reliability
- Quality

Definition of ‘CFD Quality’:
- Quantification of numerical errors
- Minimization of numerical errors
- Quantification of model errors
- Quantification of application uncertainties
- Application and collection of ‘Best Practices’
- Continuous improvement → Kaizen
Best Practice Guidelines

- Techniques for quality assurances in CFD
- Importance for validation
- Hierarchies
 - Error hierarchy
 - ’Exact‘ methods → ’empirical‘ methods
- Practicality ↔ progress in computer hardware & algorithms
- Awareness
- No checks → no errors?
Best Practice Guidelines

• Knowledge management
 – Document
 – Foster use of good practices
 – Build expertise
BPG: Main Topics

- Understand application
- Document and defend assumptions:
 - Geometry
 - Boundary conditions
 - Flow regime
 - Sources of systematic error
 - Approximations
 - Data
- Accuracy expectations vs. assumptions?
Structure of ECORA BPG’s

Definition of errors in CFD simulations:

1. **Numerical errors**
 - Solution error
 - Spatial discretisation error
 - Time discretisation error
 - Iteration error
 - Round off error
 - Solution error estimation

2. **Modelling errors**
3. **User errors**
4. **Application uncertainties**
5. **Software errors**
Structure of ECORA BPG’s

General Best Practice Guidelines:

1. Avoiding user errors
2. Geometry generation
3. Grid generation
4. Model selection and Application
 • Turbulence models
 • Heat transfer models
 • Multi-phase models
5. Reduction of application uncertainties
6. CFD simulation
 • Target variables
 • Minimising iteration errors
 • Minimising spatial discretisation errors
 • Minimising time discretisation errors
 • Avoiding round-off errors
7. Handling software errors
Further Topics of ECORA BPG’s

• Guidelines for evaluation of existing CFD simulations

• Selection and evaluation of experimental data
 – Verification experiments
 – Validation experiments
 – Demonstration experiments

• Specific consideration for ECORA

• Structure of Evaluation and Validation Reports
Investigated ECORA testcases

- **Verification tests**
 - Oscillating manometer (PSI, CEA)
 - Centralized sloshing (CFX, CEA)

- **Validation tests**
 - Impinging air jet with heat transfer (CFX)
 - Impinging water jet in air (GRS)
 - Impinging water jet on free surface (CEA, NRG)
 - Contact condensation in stratified flow (EDF, CFX)

- **Demonstration tests**
 - UPTF Test 1 (single-phase mixing) (NRG, EDF)
 - UPTF Test 8 (GRS)
 - UPTF TRAM C1 (GRS, EDF)
BPG: Recommendations

• Grid generation:
 – Scalable grids
 – Grid angles $> 20^\circ$ and $< 160^\circ$ (accuracy, convergence)
 – Aspect ratios $< 1,000$ on 32-bit computers
 – Expansion ratios $< 1.5 \ldots 2$
 – Capture physics

• Grid refinement:
 – Manual, based on error estimate
 – Automatic adaptive based on ‘error sensor’
Scalable Grids
BPG: Recommendations

- **Iteration error:**
 - Apply procedure in BPG to define convergence criterion
 - Monitor residual norms
 - Monitor global balances
 - Check on monotonic convergence
Iteration Error Control
BPG: Recommendations

- **Discretisation error:**
 - 1st order schemes require *very, very fine grids* for most 3-D applications
 - Start with 1st order scheme
 - Switch to 2nd order scheme
 - Compare target variables for both schemes
 - **Error estimation at little extra cost**
Richardson Extrapolation

- Impinging jet flow with heat transfer
- 2-D, axisymmetric
- Grids:
 - $50 \times 50 \rightarrow 800 \times 800$
- Practical in 2-D
<table>
<thead>
<tr>
<th>Grid</th>
<th>Nu Scheme 1</th>
<th>Nu Scheme 2</th>
<th>Error Scheme 1</th>
<th>Error Scheme 2</th>
<th>R.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 × 50</td>
<td>190.175</td>
<td>176.981</td>
<td>22.1 %</td>
<td>13.6 %</td>
<td></td>
</tr>
<tr>
<td>100 × 100</td>
<td>170.230</td>
<td>163.793</td>
<td>9.3 %</td>
<td>5.1 %</td>
<td>8.1 %</td>
</tr>
<tr>
<td>200 × 200</td>
<td>162.664</td>
<td>159.761</td>
<td>4.4 %</td>
<td>2.6 %</td>
<td>2.5 %</td>
</tr>
<tr>
<td>400 × 400</td>
<td>159.646</td>
<td>158.296</td>
<td>2.3 %</td>
<td>1.4 %</td>
<td>0.9 %</td>
</tr>
<tr>
<td>800 × 800</td>
<td>157.808</td>
<td>157.168</td>
<td>1.1%</td>
<td>0.7 %</td>
<td>0.7 %</td>
</tr>
<tr>
<td>∞ × ∞</td>
<td>155.751</td>
<td>155.777</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discretisation Error

- Scheme 1
- Scheme 2

\[\frac{1}{N} \]

- \(\text{Nu}_{\max} \)

Graph showing the relationship between \(\frac{1}{N} \) and \(\text{Nu}_{\max} \) for Scheme 1 and Scheme 2.
Discretisation Error

<table>
<thead>
<tr>
<th>Equivalent 3-D</th>
<th>Grid</th>
<th>Nu Scheme 1</th>
<th>Nu Scheme 2</th>
<th>Error Scheme 1</th>
<th>Error Scheme 2</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>125,000</td>
<td>50 × 50</td>
<td>190.175</td>
<td>176.981</td>
<td>22.1 %</td>
<td>13.6 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>1,000,000</td>
<td>100 × 100</td>
<td>170.230</td>
<td>163.793</td>
<td>9.3 %</td>
<td>5.1 %</td>
<td>4.1 %</td>
</tr>
<tr>
<td>8,000,000</td>
<td>200 × 200</td>
<td>162.664</td>
<td>159.761</td>
<td>4.4 %</td>
<td>2.6 %</td>
<td>1.9 %</td>
</tr>
<tr>
<td>64,000,000</td>
<td>400 × 400</td>
<td>159.646</td>
<td>158.296</td>
<td>2.3 %</td>
<td>1.4 %</td>
<td>0.9 %</td>
</tr>
<tr>
<td>512,000,000</td>
<td>800 × 800</td>
<td>157.808</td>
<td>157.168</td>
<td>1.1 %</td>
<td>0.7 %</td>
<td>0.4 %</td>
</tr>
<tr>
<td>∞ × ∞</td>
<td>∞ × ∞</td>
<td>155.751</td>
<td>155.777</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solution Error Control → Practicality Limits

- Calculation times
 - 8 days on 6-processor parallel machine
 - ¼ geometry → 450,000 elements
 - 30 s real time

- Extrapolation to real problem
 - 2.5 mio elements (minimum)
 - 300 s real time
 - ≈ 1 year on 6 processors
 - ≈ 2 months on 36 processors

UPTF test, ECC injection below water level, courtesy M. Scheuerer, GRS
Practicality Limits

• Transient, 3-D calculations
 – Long transients
 – Complex geometry
 – Complex physics
 – ...

• Present results together with done Q&A assurance

• do ‘as much as feasible’

• Create awareness with respect to uncertainties and errors
Uncertainties

• Uncertainties:
 – Uncertainty analysis for both the experiments and CFD solutions
 – Systematic variation of uncertain parameters (e.g. turbulence boundary conditions, MPF length scales,...)
 – Generate response surfaces

• General ‘Quality Assurance’ and PSA techniques applicable
 – Statistics
 – Design of Experiments (DOE)
 – Probabilistic Safety Analysis
BPG: Model Recommendations

• Statistical turbulence models
 – $k-\varepsilon \rightarrow k-\varepsilon/k-\omega$ turbulence models with shear-stress limiter (SST)
 – Improved results for
 • Separation
 • Re-attachment

• Wall treatment
 – Standard logarithmic wall laws
 \rightarrow Combined linear/logarithmic wall laws
 – Resolution of viscous sublayer, if possible
Example: Impinging Jet Flow
Example: Impinging Jet Flow

Model error $k-\varepsilon$
Wall Function Behaviour

<table>
<thead>
<tr>
<th>Linear</th>
<th>Buffer</th>
<th>Logarithmic</th>
</tr>
</thead>
</table>

- **Log law**
- **Automatic**
- **Linear law**
BPG: Model Recommendations

- Steady-state vs. unsteady-state flows
- Turbulence models?
 - URANS
 - LES
 - DES & SAS
 - Combination of URANS & LES
- Research & validation required
Transient 3-D Flows

Example:

UPTF test turbulence vs. large scale fluctuations

Calculations by Sander Willemsen, NRG
Turbulence & Transient Flows

- Large-scale fluctuations vs. turbulence fluctuations
 \[t_t = \frac{k}{\epsilon} \leq T_f \]
- Trend towards DES, SAS, LES
- Problem areas:
 - LES wall treatment
 - DES, SAS switching criteria, CPU-time, ...
Multi-Phase Flow Models

- Progress in modelling individual flow classes
 - Bubbly flows
 - Free surface flows
- Problem and research areas
 - Different morphologies
 - Flow regime transition
 - Mathematical behaviour of model equations
- Numerical methods
 - Calculation times, robustness, ...
Multiple Morphologies

Figure 1. Schematic of the experimental apparatus.
Simulation with the Grace drag model (80x80 grid):

- \(d_P = 5\text{mm} \)
- \(d_P = 0.5\text{mm} \)
DNS resolution of small MPF structures on grid refinement

Grid dependency
water wave traveling towards the outer wall
two-phase flow model, Grace drag, $d_p=5\text{mm}$, time $T=0.25\text{s}$
\rightarrow resolution of smaller structures prevents grid convergence

40 x 40 grid 80 x 80 grid 160 x 160 grid
BPG: Summary & Future

- BPG developed and successfully applied in ECORA for single phase flows and 'simple' MPF's
- Simulations with complex models/ geometries/ unsteady flows met difficulties in the application of BPG
 - strong grid sensitivity (e.g. sloshing, plunging jet)
 - strong model parameter sensitivity (e.g. sloshing, plunging jet)
 - some model formulations are grid dependent (free surface, turbulence treatment, wall boiling, ...?)
- Future topics
 - Quality control for unsteady-state flows
 - Model recommendations for unsteady-state flows
 - Model recommendations for multi-phase flows
 - Comments on practicality limits
- Worst strategy would be to continue single shot CFD in Nuclear Reactor Safety
 \[\rightarrow \text{Large interest in BPGs from all industrial areas!} \]