

Qualification of ANSYS Software as a Framework of CFD and Multi-Physics Integration for Thermohydraulic Applications

Thomas Frank ANSYS Germany, 83624 Otterfing <u>Thomas.Frank@ansys.com</u>

Overview

- ANSYS CFX & Workbench product overview
- ANSYS CFX Modeling Capabilities
 - Single and Multiphase Flows
 - Turbulence
 - Heat and Mass Transfer / Thermohydraulics
 - Code Coupling
- Solver Technology, Performance & Efficiency
- Code Maintenance, Education & Support
- Model Validation
- Applications in Nuclear Reactor Safety (NRS)
- Summary

Support for Decision Making", EC, Luxembourgh

© 2006 ANSYS Germany

ANSYS Workbench

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 5 © 2006 ANSYS Germany

ANSYS Workbench

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 6 © 2006 ANSYS Germany

ANSYS Workbench

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 7 © 2006 ANSYS Germany

Multiphysics-Environment & FSI (NSYS)

CFX Single Phase Capabilities

- Steady state & transient simulation
- Sub-, trans- and supersonic flows
- Wide variety of turbulence models (18+):
 - Standard k-ε
 - k-ω, SST
 - RSM (k- ε and k- ω based)

- Algebraic RSM (EARSM)
- Scale resolving turb. models (LES, DES, SAS)
- Material database, Multi-component fluid mixtures
- Chemical reactions, combustion models,...
- Conjugate heat transfer (CHT walls)
- Radiation

Slide 9 © 2006 ANSYS Germany

CFX Solver Models

•	Turbulence r	models, Transition	•	Heat transfer m	odels, CHT		
•	Mixture mod	els	•	Radiation mode	els:		
•	Eulerian mul full N-phase,	tiphase: homogeneous,		P1, DTM, Monte multiband, multig	Carlo, grey, specular,		
	inhomogeneo Multicompon	• full feature ma	itri	x interaction	ering, ort		
•	Free surface	 fully paralleliz 	ed	(PVM, MPI)	dels:		
	surface tensi	 coupled solve 	r		ultistep, kinetic,		
•	Lagrangian	 algebraic mult 	ig	rid (AMG)	d, partially		
•	Phase chang cavitation, bo	 single & doub 	le	precision	models		
	evaporation,	solid/liquid	•	Transient mode	ls		
•	Porous media models			2-way FSI (ANSYS WB, MpCCI)			
•	Real fluid models			Moving Mesh			
•	 User-Fortran, CCL, 			Multi-domain physics			
User Customization •				More			
16. N	16. March 2006 Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Slide 12 Support for Decision Making", EC, Luxembourgh © 2006 ANSYS Germany						

CFD \Leftrightarrow 1d-Code Coupling

- interfaces for CFX with AMESim / GT-Power
- mechanical / hydraulic BCs
- interfaces for ATHLET & RELAP-5 planed

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh

Slide 14 © 2006 ANSYS Germany

Solver Efficiency

- CFX-5 coupled solver
 - hydrodynamic system (U-V-W-P system of eq's)
 - coupled chemical reactions
 - coupled multiphase
- Algebraic Multigrid Solver
 - highly convergent
 - multigrid solver used by all models
 - enhanced robustness
 - effort grows linear with mesh resolution
- Parallelization & High-Performance Computing
 - fully and highly efficient parallelized solver (PVM, MPI)
 - memory scalability and speed-up
 - flexible partitioning methods
 - HPC architecture support (with limitations)

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 15 © 2006 ANSYS Germany

Algebraic Multigrid Solver

- Grid refinement:
 - constant (linear) performance with grid refinement
- Sensitivity to grid aspect ratios:
 - aspect ratios: 3, 30, 300
 - AMG shows better performance then geometric multigrid

Solver Efficiency: Parallelization **MSYS**

- Test results courtesy of Dr. M. Ehrig, HPTC
 - PA 8800 superdome
- 80 million nodes
- Low data transfer algorithm

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 17 © 2006 ANSYS Germany

Code Maintenance, Support, Education & Training

- Fully maintained commercial CFD code
 - → extensive user documentation and tutorials, benchmark test cases, examples,...
- Full user support & training
 @ ANSYS & In-house
- Engaged in BPG for single and multiphase flows
 → ECORA, ASTRESA proposal
 → ERCOFTAC, QNET-CFD, ...
- Education and training:
 - → 4th Joint FZR & ANSYS CFX Short Course & Workshop on MPF in NRS, 26.-29. June '06
 → Regular CFX Seminars & Updates

Slide 18 © 2006 ANSYS Germany

Qualification of ANSYS Software

- Software engineering process according to strict guidelines derived in the project SEMPA (SEMPA – Software Engineering Methods for Parallel Applications)
- maintained Quality Assurance database
- QA defects are tracked until they are corrected by a developer and the solution is approved
- nightly execution of more then 350 regression tests for basic physical models on all ~10 supported hardware platforms
 → more then ~3500 simulation runs each day
- results of regression tests are compared to previously evaluated results
- failures / differences in regression tests are marked in a web interface and will be tracked by responsible developers immediately

Qualification of ANSYS Software (cont.)

- Internal database of automated validation test suites
 - stored with all mesh, input and output data
 - references are reliable experimental or analytical data
 - all validation material available to customers for own testing purposes on request
- Selected validation tests are repeated on new software versions
- 3 stages of Pre-Release testing:
 - Beta testing program with strong user participation
- Functional and acceptance testing of new software versions prior to release by internal testing group
- Participation in national/EU projects focused on validation of CFD models and codes

Model Validation

- large effort of ANSYS CFX in model validation
- participation in EU / national research projects:

- German CFD Network on Nuclear Reactor Safety Research
- Evaluation of Computational Fluid Dynamic Methods for Reactor Safety analysis
- Advanced 3d two-phase flow simulation tool for application to reactor safety
- MIX-R Project on fluid mixing and flow distribution phenomena in the PWR primary circuit

... and much more, e.g. QNET-CFD, PRECCINSTA, EXPRO, ALESSIA, FLOMANIA, DESider, Cavitation

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 21 © 2006 ANSYS Germany

Bubbly Flow Model Validation FZR MT-Loop and TOPFLOW Database

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 22 © 2006 ANSYS Germany

Validation: Bubbly Flows Turbulent Dispersion Force

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 23 © 2006 ANSYS Germany

Validation: Polydisperse Flows Inhomogeneous MUSIG Model

Boron Mixing Experiments at ROCOM Test Facility, FZR

Scheme of the ROCOM test facility at FZ Rossendorf

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 25 © 2006 ANSYS Germany

Transport of Slugs -Streamlines

Transport of Slugs

Transient Slug Mixing

Quantitative Results of Slug Mixing

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 29 © 2006 ANSYS Germany

ECC Injection after SBLOCA

- UPTF demonstration case
- full-scale simulation of the primary system of the four loop 1300 MWe Siemens/KWU PWR
- Fluid-Fluid mixing in Cold Leg and Downcomer during ECC injection after SBLOCA
- Further UPTF cases investigated by GRS

Courtesy of Sander Willemsen

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 30 © 2006 ANSYS Germany

VVER RDB Simulation

- Analysis of a VVER-1000 RDB (NPP Kozloduy, BG) OECD Coolant Transient Benchmark
- Temperature transient in a single Cold Leg
- Structures > 5mm resolved by the mesh

ost-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platform Support for Decision Making", EC, Luxembourgh Slide 36 © 2006 ANSYS Germany

VVER Simulation

Initial and Boundary Conditions

281-286 MW Core Power Output (Assumption: linear increase up to t=1800s)

Loop No	Cold leg temp [℃]	Mass flow rate [kg/s]	ColdLeg Temperatures	
1	268.6	4737	500 — ColdLeg 2 548 — ColdLeg 3 — ColdLeg 4	
2	268.7	4718	5 44	
3	268.6	4682	542 540	
4	268.6	4834	0 500 1000 1500 2000 time [s]	
			Courtesy of	

Courtesy of M. Böttcher, FZ Karlsruhe

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 37 © 2006 ANSYS Germany

Temperature Distribution in VVER during Temp. Transient

Temperature Distribution in VVER RDB

M. Böttcher, FZ Karlsruhe

2006 ANSYS Germany

Temperature Distribution in VVER RDB

Support for Decision Making", EC, Luxembourgh

© 2006 ANSYS Germany

VVER Simulation – Hot Leg Temperature Transients

Temperature at Hot Legs 1-4

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh

Slide 41 © 2006 ANSYS Germany

- ThAI test facility 60m³
- four stages:
 - Helium injection
 - vertical steam injection
 - horizontal steam injection
 - flow dissipation
- 7700s duration of the experiment
- CFX 5.7 simulation
- 105664 grid cells, symmetry assumption

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 42 © 2006 ANSYS Germany

Velocity distribution at T=1000s, 3000s, 5500s

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 43 © 2006 ANSYS Germany

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh

Slide 45 © 2006 ANSYS Germany

EXPBT

ASTGRS²

ASTIRS1 COCGRS⁻ COCLEE1

-□--- KUPIPP1 ->--- MELSTU1 ->--- TONIRS1

phases

Containment Analysis VVER 440-213 (PAKS)

- LBLOCA with H₂ release
- 20 passive autocatalytic recombiners (PAR)
- bulk and wall condensation
- pressure peak suppression system
- 25 days on 8 processors (AMD)

Courtesy of M. Heitsch, GRS

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 46 © 2006 ANSYS Germany

Containment Analysis VVER 440-213 (PAKS)

Effect of H₂ passive autocatalytic recombiners:

Summary

- ANSYS CFX qualified software integration platform
- Multi-physics simulation environment:
 - CFD, Thermohydraulics
 - Fluid-Structure-Interaction (2-way FSI)
 - CFD 1d-Code coupling
 - Radiation, Combustion, CFD EMAG coupling
- Vast manifold of physical models
- Robustness, Scalability & Performance for large applications
- Maintained CFD code, Support & Education
- Large continuous effort in model dev. & validation
- Customer oriented development

16. March 2006

Slide 48 © 2006 ANSYS Germany

Thank You!

16. March 2006

Post-FISA-2006 Workshop No. 4: "Qualification of Advanced Numerical Simulation Platforms as Support for Decision Making", EC, Luxembourgh Slide 49 © 2006 ANSYS Germany