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Outline of the presentation

• Introduction – modelling of dispersed gas-solid flows

• Stochastic particle-particle collision model – overview

• Algorithm of the collision model

• Validation of the collision model

– Test case description

– Comparison with experimental results

• Summary and advisable extensions

Outline
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Modelling of dispersed gas-particle flows

• Two common techniques for dispersed gas-solid flows:

– Euler-Euler

– Euler-Lagrange

• Euler-Lagrange model is suitable only for dilute flows

– two-way coupling

• For highly loaded gas-solid flows, four-way coupling is essential

– interaction gas ↔ particle

– momentum transfer between particles → collisions

– realisation by the presented model

Modelling of highly loaded dispersed gas-particle flows
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Stochastic particle-particle collision model, conception

• Sequential trajectory calculation

• Presence of neighbouring particles is taken into account

• Creation of a virtual collision partner according to local statistical mean 

particle properties

• Calculation of a collision probability

• Random process decides whether or not a collision takes place

• If it occurs the collision is calculated deterministically

• Enormous computational effort by simultaneous tracing of all particles is 

avoided

• Collision model is of iterative nature

Stochastic particle-particle collision model
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Stochastic particle-particle collision model, requisites

• High mass loading

• moderate volumetric concentration (<~ 20%)

• Only binary collisions

– inter-particle distance >> particle diameter

– aerodynamic forces dominate

– not suitable for fluidised beds

– ρP >> ρGas

• Spherical particles

Requirements for applicability
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Stochastic particle-particle collision model, algorithm

Algorithm of the collision model (1)
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Stochastic particle-particle collision model, algorithm

Algorithm of the collision model (2)
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Collision model

subroutine, 

User FORTRAN

Collision model
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User FORTRAN
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Stochastic particle-particle collision model, algorithm

Algorithm of the collision model (3)
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Instantaneous velocity of the virtual collision partner

• Velocity of P2 comprises:

– a mean part from the local average values

– a fluctuating part including a correlation term between the two particles due to 

Sommerfeld [3,4] and a random term

– correlation function is determined by LES of a homogeneous isotropic turbulence 

field

• Angular velocity of the particle is calculated the same way

– no correlation between particles

Instantaneous velocity of the virtual particle P2
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• Collision frequency depends on:

– particle number density nP

– diameters of real and fictitious particle

– instantaneous velocities of both particles

• Collision probability → function of collision frequency and time step

– decision by means of a uniformly distributed random number

• Lagrangian time step → limited for stability and accuracy reasons

Collision frequency, collision probability and time step

Collision frequency, probability and time step
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Position of the virtual collision partner and calculation of the collision

• Stochastic determination

• Probability equally distributed over 
cross section

Position of the collision partner

• Distinction between sliding and non-sliding collision

• Determination of transferred momentum

Deterministic calculation of the collision
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Implementation of the collision model in ANSYS CFX, limitation

• User Fortran subroutine in FORTRAN 77

• Link to the CFX solver by an interface provided by ANSYS

• Four-way coupling is made available for gas-solid flows

• The model is contained in the next version of CFX (11, Beta-status)

Implementation in ANSYS CFX

Current limitation

• No particle rotational motion

• Simplified particle-wall collision treatment

• If this aspect is improved in future → inter-particle collision model 

will account for angular velocities
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Description of the validation experiment

• Experiment was arranged exactly for this purpose

• Enforced crossing of trajectories

• Flow induced by gravitation

• Glass particles, dP = 3 mm

• ρP = 2500 kg/m3

• Collision effects dominate

Validation by experiment of Fohanno & Oesterlé [6]
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Particle trajectories without / with collision model

without collision model with collision model

Comparison of particle trajectories:
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Particle number density at small / large particle mass flow rate

• 3 measuring planes

• Particle streak velocimetry (2D optical method)

Comparison of particle number density (with collision model):

small mass flow rate, α = 6.5 · 10-4 large mass flow rate, α = 1.9 · 10-3
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Study of grid refinement and Lagrangian time step

Grid refinement study and Lagrangian time step

• Coarse grid: 10500 elements, 30000 trajectories

• Fine grid: 620000 elements, 480000 trajectories

• Lagrangian time step depends on grid refinement

• Accuracy of variable fields is improved

• For equally good statistic → number of trajectories quadratic in 

number of elements
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Comparison of results: experiment and simulation – concentration profiles

• Estimated measuring error: 

– 10-13% for mean values

– 15-20% for standard deviations

• Particle concentration profiles from measurement & simulation:

– for small and large mass flow rate

– main source of error: inaccurate particle-wall treatment

Measurement error and concentration profiles
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Comparison of results: axial mean velocity profiles of particles

• Reason for deviations:

– Favourable downward flow of air in the simulation

→ reduction of drag and faster downstream of particles

– Inadequate particle-wall collision treatment

Particle axial mean velocity profiles
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Comparison of results: velocity standard deviation in transverse direction

• Deviation in plane A not allegeable by inaccurate particle-wall collision 
treatment

– intense air turbulence or

– non-uniform particle supply → explanation but improbable

→ likely caused by measurement errors

• Differences in planes B and C → lower trajectory crossing point

• Fluctuations decrease with increasing mass flow rate

Particle velocity standard deviation in transverse direction
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Comparison of results: absolute velocity in plane of visualisation

• Almost no decrease of absolute velocity in simulation

• Noticeable decline in experiments

– 3D effects of inter-particle collisions

– dissipation effects due to inelastic collisions

– conversion of translational in rotational energy (most probable)

– dependent on collision frequency

Particle absolute velocity in plane of visualisation
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Experimental results: particle velocity fluctuations, small mass flow rate

• Plane A: 2 types of trajectories:

– vertically falling: → 2nd quadrant

– oblique rebounding from wall:  → 4th quadrant

• Panes B & C: 3 types of trajectories, symmetry:

– vertically falling: → centre

– rebounding from both walls: → off-centre

• Plane C: considerable scatter

– homogenisation of particle flow due to collisions

Scatter plot of particle velocity fluctuations (exp.)
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Comparison of results: scatter plots of particle velocity fluctuations

Scatter plot of particle velocity fluctuations (exp. & sim.)
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Summary and advisable extensions (1)

• Application of a collision model for highly loaded dispersed gas-
particle flows is indispensable

• Qualitatively correct prediction of

– particle velocity profiles 

– homogenisation of the particle flow

– attenuation of velocity fluctuations

– influence of the mass flow rate

• Deviations due to

– insufficiently accurate particle-wall collision modelling

– no particle rotation

– no rotation induced lift force (Magnus-effect)

– no shear induced lift force (Saffman-force)

Summary and advisable extensions (1)
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Summary and advisable extensions (2)

• Comparison with simulations by Pachler [7] of the same experiment 

including particle rotation shows a slight improvement of the results

• Better predictability [7] with model extension by Sommerfeld [3]

• In flows dominated by particle-wall collisions, particle rotation 

should be included, as the 3 other validation cases accomplished

suggest

• Providing of detailed results in scope of engineering accuracy

• Distinct advancement without enhancing the effort considerably

Summary and advisable extensions (2)
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Stochastic particle-particle collision model, literature

• Model was derived by Oesterlé & Petitjean [1,2]

• Extension to consideration of correlated particle motions 

by Sommerfeld [3,4]

• Detailed formulation by Frank [5]

Stochastic particle-particle collision model
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Further test cases for validation

• Test case 2: Vertical pipe flow by 

Tsuji et al. [8]

• Test case 3: Rectangular particle 

laden jet flow by Sommerfeld [9]

• Test case 4: Swirling particle laden 

flow by Zhou et al. [10]

[8] Tsuji, Y., Morikawa Y. and H. Shiomi: LDV measurements of an air-solid two-phase flow in a vertical pipe.

Journal of Fluid Mechanics, 139:417-434, 1984.

[9] Sommerfeld, M.: Particle dispersion in turbulent flow: the effect of particle size distribution.

Particle and Particle Systems Characterization, 7:209-220, 1990

[10] Zhou, L.X., Y. Li, T. Chen and Y. Xu: Studies of the effect of swirl numbers on strongly swirling turbulent 

gas-particle flows using a phase-Doppler particle anemometer.

Powder Technology, 112:79-86, 2000

Further test cases


