CFD Simulation of the Two-Phase Flow around an Obstacle applying an Inhomogeneous Multiple Bubble Size Class Approach

E. Krepper, D. Lucas, H.-M. Prasser, M. Beyer, Th. Frank

Multiphase Flows: Simulation, Experiment and Application Hotel Park Plaza, Dresden 25 – 27 April 2007

Institute of Safety Research 26.04.2007

Outline

- 1. The concept of the inhomogeneous MUSIG model
 - role of the lift force for the flow regime
- 2. Application to the simulation of a complex flow situation

Nondrag bubble forces: Forces perpendicular to the flow direction

- Turbulence Dispersion:
 - transfer of the turbulent fluctuations of the liquid on the bubbles
 - smoothing of radial volume fraction profiles
- Wall Force:
 - pushes bubbles away from the wall
- Lift Force:
 - gaseous bubbles in a shear flow: pressure differences from the liquid surrounding on the bubble surface
 - proportional to the gradient of the liquid flow field
 - direction dependent on the bubble size

Tomiyama (1998): Experimental Investigation of single bubbles in a laminar shear flow (Glycol)

$$C_{Lift} = \begin{cases} \min[0.288 \tanh(0.121 \text{Re}), f(Eo_d)] & Eo_d < 4 \\ f(Eo_d) & \text{for } 4 < Eo_d < 10 \\ -0.27 & Eo_d > 10 \end{cases}$$

with $f(Eo_d) = 0.00105 Eo_d^3 - 0.0159 Eo_d^2 - 0.0204 Eo_d + 0.474$

•

٠

Conditions for steam/water

- evaluation of the Tomiyama correlation:
- with higher pressure the critical bubble size d_B(C_{LIFT}=0) is decreased

Measurements in FZD: Decomposition of the gas volume fraction distribution according bubble size

TOPFLOW experiments

 $J_L = 1$ m/s and $J_G = 0.22$ m/s (FZR-118), L/D = 40, Injection values: D_{inj} = 4 mm

• Horst-Michael Prasser et. al (2005): evolution of the structure of a gasliquid two-phase flow in a large vertical pipe, NURETH-11, paper 399

Influence of bubble forces on the flow regime in a vertical upward bubbly flow

- Lift Force:
 - small bubbles are pushed towards the wall
 - large bubbles are moved towards the centre
- bubble break-up
 - turbulent dissipation
 - only near the wall
- bubble coalescence :
 - at bubble accumulation

➤ radial phenomena have important influence on the flow regime

 \succ a model approach has to be able to describe radial separation of small and large bubbles

Population balance approach

- Definition of different bubble size classes
 - interact via models for bubble coalescence and bubble break-up
- In the Euler/Euler approach in principle the definition of several bubble classes is possible
- For the adequate description decades of bubble classes would be necessary (shown by separate investigations)
- Numerical problems: CPU time, convergence, stability

Multiple bubble size group model (MUSIG)

• S. Lo (1996 CFX-4):

- for the gaseous phase only one velocity field
- only one momentum equation for the gaseous phase
- consideration of bubble break-up and coalescence only in the continuity equation

Concept for the improvement of the MUSIG Model

- The gaseous momentum equation is solved for at least two gaseous phases
- > the description of the separation of small and large bubbles becomes possible
- simulation of bubble coalescence and break-up over all gaseous subsize fractions (continuity equation)

TOPFLOW FZR-118: $J_L=1.0 \text{ m/s}$, $J_G=0.2194 \text{ m/s}$ 2 dispersed Phases, 34 sub-size fractions

Institute of Safety Research 26.04.2007 12

Investigation of a complex flow situation: Flow around an obstacle

Institute of Safety Research 26.04.2007 13

Comparison of calculated and measured timely averaged gas volume fraction and liquid velocity distributions

water velocity

air volume fraction

Run 096: $J_1 = 1.017$ m/s; $J_G = 0.0898$ m/s

Calculated Turbulence Dissipation

Institute of Safety Research 26.04.2007 15

Comparison of measured and calculated cross sectional averaged bubble size distributions

Run 096 J_L = 1.017 m/s; J_G = 0.0898 m/s

Mitglied der Leibniz-Gemeinschaft

streamlines for large and small bubbles

Mitglied der Leibniz-Gemeinschaft

Lift forces

Institute of Safety Research 26.04.2007 18

mean sauter bubble diameter

Mitglied der Leibniz-Gemeinschaft

Gas distributions for different bubble size classes run 096 (J_L = 1.017 m/s; J_G =0.0898 m/s)

Gas distributions for different bubble size classes

Institute of Safety Research 26.04.2007 23

Obstacle: Summary of observations

- 1. Phenomena in the wake of the obstacle
 - Small bubbles are transported behind the obstacle (lift force)
 - Bubble accumulation behind the obstacle causes coalescence
 - in the measurements behind the obstacle mainly large bubbles are found
- 2. Phenomena in the jet beside the obstacle in the non-obstructed cross sectional area
 - Generated large bubbles are rejected into the jet beside by the obstacle
 - Near the jet margin large shear rates are found
 - fragmentation of large bubbles (not considered in the calculations)
 - small bubbles are rejected out of the jet (lift force)

Summary

- correct function of the inhomogeneous MUSIG model approach confirmed
- thoroughly understanding of the complex flow situation
- closure models for bubble forces in agreement with experiment
- most weak point: Models for simulation of bubble coalescence and bubble break-up
 - With the actual implemented models tuning coefficients are necessary:
 - air/water in vertical tube: $F_B = 0.25$; $F_C = 0.05$
 - steam/water in vertical tube: $F_B = 0.02$; $F_C = 0.05$
 - complex flow: tuning factors depend on flow situation
- Further work is considered for future investigations

