CFD Simulation of the Two-Phase Flow around an Obstacle applying an Inhomogeneous Multiple Bubble Size Class Approach

E. Krepper, D. Lucas, H.-M. Prasser , M. Beyer, Th. Frank

Multiphase Flows: Simulation, Experiment and Application
Hotel Park Plaza, Dresden
25 – 27 April 2007
Outline

1. The concept of the inhomogeneous MUSIG model
 • role of the lift force for the flow regime
2. Application to the simulation of a complex flow situation
Nondrag bubble forces: Forces perpendicular to the flow direction

• Turbulence Dispersion:
 – transfer of the turbulent fluctuations of the liquid on the bubbles
 ➢ smoothing of radial volume fraction profiles

• Wall Force:
 – pushes bubbles away from the wall

• Lift Force:
 – gaseous bubbles in a shear flow: pressure differences from the liquid surrounding on the bubble surface
 – proportional to the gradient of the liquid flow field
 ➢ direction dependent on the bubble size
Tomiyama (1998): Experimental Investigation of single bubbles in a laminar shear flow (Glycol)

\[
C_{\text{Lift}} = \begin{cases}
\min[0.288 \tanh(0.121 \text{Re}), f(Eo_d)] & \text{for } Eo_d < 4 \\
 f(Eo_d) - 0.27 & \text{for } 4 < Eo_d < 10 \\
 -0.27 & \text{for } Eo_d > 10
\end{cases}
\]

with \(f(Eo_d) = 0.00105 Eo_d^3 - 0.0159 Eo_d^2 - 0.0204 Eo_d + 0.474 \)

\[
Eo_d = \frac{g(\rho_l - \rho_g)d_h^2}{\sigma}
\]

- application of this correlation to air/water:
- \(C_{\text{LIFT}} \) changes the sign at \(d_B = 5.8 \text{ mm} \).
Conditions for steam/water

- evaluation of the Tomiyama correlation:
 - with higher pressure the critical bubble size \(d_B(C_{LIFT}=0) \) is decreased
Measurements in FZD: Decomposition of the gas volume fraction distribution according bubble size

Each pixel is labelled according to the size of the bubble it belongs to.

Decomposition

$D_{bl} < 5.5 \, \text{mm}$ $D_{bl} > 5.5 \, \text{mm}$
TOPFLOW experiments

\[J_L = 1 \text{ m/s and } J_G = 0.22 \text{ m/s (FZR-118), L/D = 40, Injection valves: } D_{\text{inj}} = 4 \text{ mm} \]

Influence of bubble forces on the flow regime in a vertical upward bubbly flow

- **Lift Force:**
 - small bubbles are pushed towards the wall
 - large bubbles are moved towards the centre

- **bubble break-up**
 - turbulent dissipation
 - only near the wall

- **bubble coalescence:**
 - at bubble accumulation

> radial phenomena have important influence on the flow regime

> a model approach has to be able to describe radial separation of small and large bubbles
Population balance approach

- Definition of different bubble size classes
 - interact via models for bubble coalescence and bubble break-up
- In the Euler/Euler approach in principle the definition of several bubble classes is possible
- For the adequate description decades of bubble classes would be necessary (shown by separate investigations)
- Numerical problems: CPU time, convergence, stability
Multiple bubble size group model (MUSIG)

- S. Lo (1996 CFX-4):
 - for the gaseous phase only one velocity field
 - only one momentum equation for the gaseous phase
 - consideration of bubble break-up and coalescence only in the continuity equation
Concept for the improvement of the MUSIG Model

- The gaseous momentum equation is solved for at least two gaseous phases
- the description of the separation of small and large bubbles becomes possible
- simulation of bubble coalescence and break-up over all gaseous subsize fractions (continuity equation)
TOPFLOW FZR-118: $J_L=1.0 \text{ m/s}$, $J_G=0.2194 \text{ m/s}$

2 dispersed Phases, 34 sub-size fractions
Investigation of a complex flow situation: Flow around an obstacle
Comparison of calculated and measured timely averaged gas volume fraction and liquid velocity distributions

Run 096: $J_L = 1.017$ m/s; $J_G = 0.0898$ m/s
Calculated Turbulence Dissipation
Comparison of measured and calculated cross sectional averaged bubble size distributions

Run 096 $J_L = 1.017 \text{ m/s}; J_G = 0.0898 \text{ m/s}$
streamlines for large and small bubbles

Run 096:
\[J_L = 1.017 \text{ m/s}; \]
\[J_G = 0.0898 \text{ m/s} \]
Lift forces

Run 096:

\[J_L = 1.017 \text{ m/s}; \]

\[J_G = 0.0898 \text{ m/s} \]
mean sauter bubble diameter

Run 096:
\[J_L = 1.017 \text{ m/s}; \]
\[J_G = 0.0898 \text{ m/s} \]
Gas distributions for different bubble size classes run 096 ($J_L = 1.017$ m/s; $J_G = 0.0898$ m/s)

measurement

<table>
<thead>
<tr>
<th>VOID</th>
<th>VOID</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.0 \leq \text{d} \leq 5.8$</td>
<td>$5.8 \leq \text{d} < 200.0$</td>
</tr>
<tr>
<td>max = 7.0 %</td>
<td>max = 28.3 %</td>
</tr>
</tbody>
</table>

calculation

- $d_B < 6$ mm
- $d_B > 6$ mm
Run 097:
\[J_L = 1.611 \text{ m/s}; \]
\[J_G = 0.0898 \text{ m/s} \]
Run 097:
\[J_L = 1.611 \text{ m/s}; \]
\[J_G = 0.0898 \text{ m/s} \]
Gas distributions for different bubble size classes

Run 097:
\[J_L = 1.611 \text{ m/s}; \]
\[J_G = 0.0898 \text{ m/s} \]
Obstacle: Summary of observations

1. Phenomena in the wake of the obstacle
 • Small bubbles are transported behind the obstacle (lift force)
 • Bubble accumulation behind the obstacle causes coalescence
 • in the measurements behind the obstacle mainly large bubbles are found

2. Phenomena in the jet beside the obstacle in the non-obstructed cross sectional area
 • Generated large bubbles are rejected into the jet beside by the obstacle
 • Near the jet margin large shear rates are found
 • fragmentation of large bubbles (not considered in the calculations)
 • small bubbles are rejected out of the jet (lift force)
Summary

- correct function of the inhomogeneous MUSIG model approach confirmed
- thoroughly understanding of the complex flow situation
- closure models for bubble forces in agreement with experiment
- most weak point: Models for simulation of bubble coalescence and bubble break-up
 - With the actual implemented models tuning coefficients are necessary:
 - air/water in vertical tube: $F_B = 0.25; F_C = 0.05$
 - steam/water in vertical tube: $F_B = 0.02; F_C = 0.05$
 - complex flow: tuning factors depend on flow situation
- Further work is considered for future investigations