

Simulation of Flashing and Steam Condensation in Subcooled Liquid using ANSYS CFX

Thomas Frank ANSYS Germany, 83624 Otterfing Thomas.Frank@ansys.com

© 2006 ANSYS, Inc. All rights reserved.

Contents

- Introduction
- CFX real fluid properties
 - Redlich-Kwong EOS
 - IAPWS-IF97 standard for water & steam
- The CFX thermal phase change model
- Validation: The Edwards test
- Steam condensation in sub-cooled liquid
- Summary & Outlook

Introduction

Typical applications :

- NRS accident scenarios (e.g. SBLOCA, LBLOCA, PTS)
- Depressurization of superheated fluids (flashing)
- BWR fuel assemblies (boiling)

- Steam recondensation e.g. in containments
- Chemical reactor safety

© 2006 ANSYS Inc. All rights reserved. Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany Slide 3 ANSYS, Inc. Proprietary

Material Properties: EOS

- Changes over wide range of (T,p)
 → fluid properties depend on thermodynamic state
- Equation of state (EOS) types in CFX:
 - Ideal gas law
 - Tabulated data; Real gas property (RGP) tables
 - Redlich-Kwong EOS
 - User defined equation of state (CCL, CEL)
- User defined materials and material properties
 → large degree of customizability

Material Properties: IAPWS Properties of Water and Steam

 CFX-11.0: IAPWS-IF97 equation-of-state implemented Reference: W. Wagner, A. Kruse: "The Industrial Standard IAPWS-IF97: Properties of Water and Steam", Springer, Berlin, 1998

- 1. subcooled water
- 2. supercritical water/steam
- 3. superheated steam
- 4. saturation data
- 5. high temperature steam (currently not yet implemented in CFX)

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Material Properties: IAPWS Properties of Water and Steam

- Water & steam selectable from IAPWS database
- specify (T,p) range
- CFX internal use of tabulated values for speed of computation
- Definition of "Homogeneous Binary Mixture Water & Steam"
 - phase pair related properties
 - 'container' for T_{sat}=T_{sat}(p) and σ=σ(T)

Outline Material: Water Steam	×
Details of Water Steam	
Basic Settings Material Properties	
Option IAPWS Library	
Thermodynamic Properties	
□ Reference State	
Option Automatic 🔽	
✓ Table Generation ✓ Minimum Temperature	
Min. Temperature 100 [C]	
☐ ✓ Maximum Temperature	
Max. Temperature 600 [K]	
Minimum Absolute Pressure	
Min. Absolute Pres. 1 [atm]	
✓ Maximum Absolute Pressure	
Max. Absolute Pres. 8 [MPa]	
□ ✓ Maximum Points	
Maximum Points 500	
Pressure Extrapolation	
□ □ Temp. Extrapolation	
Radiation Properties	

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Thermal Phase Change Model – Bulk Condensation & Evaporation

Condensation/Evaporation rate = $\left[h_{lv}(T_l - T_s)/L\right] \cdot A_{lv}$ $h_{lv} = \lambda_l N u_{lv} / d_p$

• Heat transfer coefficient from e.g. Ranz-Marshall correlation (further available: heat transfer coeff., Nusselt number, Hughmark correlation)

© 2006 ANSYS Inc. All rights reserved. Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany Slide 7 ANSYS, Inc. Proprietary

Validation: The Edwards Test

- Edwards Test well known test case in nuclear reactor thermohydraulics
- Used for validation of many 1-d/system & CFD codes, e.g. RELAP-5, ATHLET, SERAPHIM, etc.
- Experimental data available:
 - Edwards A.R., O'Brien T.P.: "Studies of phenomena connected with the depressurization of water reactors", J. Br. Nucl. Energy Soc., Vol. 9, pp. 125-135 (1970).
 - Takata T., Yamaguchi A.: "Numerical approach to the safety evaluation of Sodium-water reaction", J. Nucl. Science & Technology, Vol. 40, No. 10, pp. 708-718 (2003).

Edwards Test Flow Setup

Physical setup:

- 1d setup, 400 & 1000 grid cells (hexahedra)
- Pressurized pipe section:
 - filled with 99.9% water and 0.1% water steam
 - p=7 MPa, T_{Water}=T_{Steam}=502 K (saturation temperature)
- Pipe section under atmospheric pressure:
 - filled entirely with water steam
 - p=1 atm, T_{Steam}=373 K
- Eulerian two-phase flow simulation
 - assumed bubble diameter : d_{bubble}=1mm
- Laminar (no turbulence model)
- Two-resistance interfacial heat transfer model
 - Water Water Stea
- Ranz-Marshall
- Water Steam zero resistance
- Thermal Phase Change Model

© 2006 ANSYS Inc. All rights reserved. Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 10 ANSYS, Inc. Proprietary

Edwards Test Flow Setup (cont.)

ANSYS[®]

Physical setup (cont.):

• Water & Water Steam properties

Case	Water	Water Steam
1) Redlich-Kwong EOS	incompressible, const. fluid properties	Redlich-Kwong EOS, high pressure cond. (1-30 MPa, 450-900 K)
2) IAPWS-IF97	compressible 0.1-8 MPa, 373-600 K	compressible, 0.1-8 MPa, 373-600 K

- Upwind advection scheme
- Transient simulation, 2nd order backward Euler time integration
- Adaptive time step control $\Delta t \in [1.0e^{-5}s, 1.0e^{-3}s], 15,...,35$ coeff. loops
- Convergence criteria: Max. Residuals < 0.0001

© 2006 ANSYS Inc. All rights reserved.

Edwards Test CFX Convergence History

- Difficult convergence, due to sudden evaporation (flashing)
- Improved with 500 table entries in IAPWS-IF97 property tables

© 2006 ANSYS Inc. All rights reserved. Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 12 ANSYS, Inc. Proprietary

Edwards Test Pressure Wave Propagation

- Pressure wave propagation in 1d geometry of Edwards pipe
- Further rise of pressure level due to evaporation

Edwards Test Steam Volume Fraction Distribution

- Evaporation starts first at burst disc location
- Further evaporation after reflection of the pressure wave from left end of the Edwards pipe

Edwards Test Pressure at Measurement Location

- qualitatively good agreement for the difficult physics
- pressure wave propagation velocity in good agreement with Takata experiment; pressure drop slightly overpredicted

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 15 ANSYS, Inc. Proprietary

Edwards Test Full Pressure Transient \rightarrow T=550ms

- pressure transient at measurement location x=1.469m
- good agreement to Takata experiment

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Edwards Test Steam VF at Measurement Location

- steam volume fraction transient at measurement location x=1.469m
- good agreement to Takata experiment

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany Slide 17 ANSYS, Inc. Proprietary

Edwards Test Parameter Variation for Initialisation

- Parameter variation wrt. initial value of vapor void fraction in pressurized pipe section and assumed bubble diameter
- Simulations performed for the first 50ms only

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 18 ANSYS, Inc. Proprietary

Steam Condensation in Subcooled Water Flow

- TOPFLOW test facility @ FZD
- High pressure air-water and steam-water experiments P≤7MPa, T≤286 °C
- Variable gas/steam injection through wall nozzles

 → 2 different bubble sizes
 → variable height and superficial velocities
- Measurement of gaseous phase VF, velocity and size distributions
 → high-pressure
 - wire-mesh sensors

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany Slide 19 ANSYS, Inc. Proprietary

Steam Condensation in Subcooled Water Flow

- TOPFLOW experiment (FZD):
 - Superficial velocities: U_{Water}=1.0m/s, U_{Steam}=0.54m/s
 - Temperature: T_{Water}=210.5 ℃ (483.6K)
 T_{Steam}=214.4 ℃ (487.5K)
 - Pressure at wire-mesh sensor: p_{Sensor}=2.08 MPa
 - Liquid sub-cooling: ∆T=3.9K
 - L=7.8m, D=195.3mm
- Preliminary CFX test (setup derivation):
 - U_{Water}=1.0m/s,
 U_{Steam}=0.1m/s
 - L=3.8m, D=51.2mm

Lucas, D., Prasser, H.-M., Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow, Nuclear Eng. Design (2006), Article in press, doi:10.1016/j.nucengdes.2006.09.004

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Re-Condensation Test Flow Setup

Physical setup:

- 3d setup, 60° pipe symmetry sector, 32.000 grid elem. (hexa's)
- Pipe initialization:
 - filled with 99.9% water and 0.1% water steam
 - p=2 MPa + hydrostatic pressure
 - T_{Water}=T_{Steam}=486.3K,...,485.4K (local saturation temperature=f(z))
- Water & Water steam from IAPWS-IF97 properties
- Eulerian two-phase flow simulation
 - assumed bubble diameter at inlet: d_{P,Inlet}=10mm

$$n'_{P}\big|_{lnlet} = \frac{r_{p}}{V_{p}}\Big|_{lnlet} = \frac{6 r_{p}\big|_{lnlet}}{\pi d_{p}^{3}\big|_{lnlet}}$$

further assumption: particle number density n_P'=const.

$$d_{P,local} = \sqrt[3]{\frac{6}{\pi} \frac{r_{P,local}}{n_{P}'}}$$

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 21 ANSYS, Inc. Proprietary

Re-Condensation Test Flow Setup (cont.)

Physical setup (cont.):

- SST turbulence model (cont. phase)
- 0-eq. disperse phase turbulence model + Sato bubble induced turbulence
- Interphase momentum transfer:
 - Grace drag
 - Tomiyama lift force
 - FAD turbulent dispersion force
 - Frank generalized wall lubrication force
- Two-resistance interfacial heat transfer model

Water– Ranz-MarshallWater Steam– zero resistance

Thermal Phase Change Model

Re-Condensation Test Flow Setup (cont.)

- Hi-Resolution advection scheme
- Transient simulation,
 2nd order backward Euler time integration
- Adaptive time step control
 - ∆t∈[5.0e⁻⁵s, 5.0e⁻³s]
 - 10,...,30 coeff. loops (max. 70)
 → 3950 time steps for
 4.5s real time
- Convergence criteria:
 - Conservation target = 0.001
 - Max. Residuals < 0.0005</p>
- Execution time:
 - approx. 168h on 6 CPU's

```
TIME STEPS:
First Update Time = 0.0 [s]
Initial Timestep = 0.001 [s]
Option = Adaptive
Timestep Update Frequency = 1
TIMESTEP ADAPTION:
Maximum Timestep = 0.005 [s]
Minimum Timestep = 0.0005 [s]
Option = Number of Coefficient Loops
Target Maximum Coefficient Loops = 30
Target Minimum Coefficient Loops = 10
Timestep Decrease Factor = 0.75
Timestep Increase Factor = 1.1
END
```

```
END
```

Lift force, Wall Lubrication Force & Turbulent Dispersion

Lift force:

• due to asymmetric wake and deformed asymmetric bubble shape

$$\mathbf{F}_{L} = \mathbf{C}_{L} r_{G} \rho_{L} (\mathbf{U}_{L} - \mathbf{U}_{G}) \times \nabla \times \mathbf{U}_{L} \qquad \mathbf{C}_{L} = \mathbf{C}_{L} (\mathbf{R} \mathbf{e}_{P}, \mathbf{R} \mathbf{e}_{\nabla}, \mathbf{E} \mathbf{o})$$

Wall lubrication force:

surface tension prevents bubbles from approaching solid walls

$$\mathbf{F}_{WL} = -C_{wall} r_G \rho_L \left| \mathbf{U}_{rel} - (\mathbf{U}_{rel} \cdot \mathbf{n}_W) \mathbf{n}_W \right|^2 \mathbf{n}_W \quad C_{wall} = C_W (\text{Eo}, \text{y/d}_P)$$

Turbulent dispersion force:

turbulent dispersion = action of turb. eddies via interphase drag

$$\mathbf{F}_{TD} = \frac{3}{4} \rho_L \frac{\overline{C_D}}{d_P} \frac{V_{tL}}{\sigma_{rL}} |U_L - U_G| \overline{r_G} \left(\frac{\overline{\nabla r_G}}{\overline{r_G}} - \frac{\overline{\nabla r_L}}{\overline{r_L}} \right)$$

FAD model by Burns et al. (ICMF'04)

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Tomiyama's Lift Force Correlation – Eo Number Dependency on T_{sat}

 $C_{L} = \begin{cases} \min\left[0.288 \tanh(0.121 \cdot \text{Re}_{p}), f(Eo_{d})\right] & Eo_{d} < 4 \\ f(Eo_{d}) = 0.00105 Eo_{d}^{3} - 0.0159 Eo_{d}^{2} - 0.0204 Eo_{d} + 0.474 & 4 \le Eo_{d} \le 10.0 \\ -0.27 & Eo_{d} > 10.0 \end{cases}$

modified Eo_d number: 0.3 ----- Tomiyama C L (orig.), 10<Eo d $Eo_d = \frac{g(\rho_L - \rho_G)d_H^2}{\sigma(T_{sat})}$ Tomiyama C L (P=100 kPa) —— Tomiyama C L (P=2.5 MPa) 0.2 Tomiyama C L (P=8 MPa) C_L F ---- Tomiyama C L (P=12 MPa) horizontal bubble 0.1 length scale: Lift Force Coeff. 0 $d_{H} = d_{P} (1 + 0.163 \cdot \text{Eo}^{0.757})^{1/3}$ 2 8 10 -0.1 -0.2 \rightarrow sign change of lift force is dependent on -0.3

Bubble diameter [mm]

\rightarrow Eo dependency for wall lubrication force as well

© 2006 ANSYS Inc. All rights reserved.

system pressure/T_{sat}

Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany Slide 25 ANSYS, Inc. Proprietary

Steam Condensation in Subcooled Water Flow

All rights reserved.

preliminary result for condensation front propagation in 3.8m ۲ long pipe of 51.2mm diameter:

Slide 26 ANSYS, Inc. Proprietary

Steam Condensation in Subcooled Water Flow

 preliminary result for condensation front propagation in 3.8m long pipe of 51.2mm diameter:

Slide 27 ANSYS, Inc. Proprietary

Summary & Outlook

- CFX-11.0 introduces IAPWS-IF97 industry standard water-steam properties
- Discussed two applications of CFX heat & mass transfer models:
 - Flashing, Edwards pipe
 - Re-condensation test @ TOPFLOW
- Good agreement of CFX results with Edwards test experimental data over wide range of water steam volume fraction 0.0≤r_{Steam}≤0.95
- Developed preliminary CFX setup for re-condensation test in order to test IAPWS fluid properties & non-drag forces
- Current & future development:
 - bubble diameter distribution from inhomogeneous MUSIG model
 - model validation against TOPFLOW data

© 2006 ANSYS Inc. All rights reserved. Th. Frank: Simulation of Flashing and Steam Condensation 5th FZD & ANSYS MPF Workshop, 25.-27. April 2007, Dresden, Germany

Slide 29 ANSYS, Inc. Proprietary