

Validation of Lagrangian Spray Formation for Use in Internal Combustion Engines

Thomas Frank, ANSYS Germany Ekaterina Kumzerova, NTS, Russia Thomas Esch, ANSYS Germany Thomas.Esch@ansys.com

Overview

- Introduction
- Validation cases
 - Droplet in cross flow
 - Solid-cone injections
 - Non-evaporating sprays
 - Evaporating spray
 - Hollow-cone sprays
- Conclusions
- Outlook

Spray Formation

- Primary Break-up
 - In-nozzle effects (cavitation, turbulence induced disturbances)
 - Instabilities on liquid-gas interface lead to primary break-up
- Secondary Break-up
 - Droplets become unstable under the action of forces induced by their motion relative to the continuous phase

Secondary Droplet Break-up Models in CFX-11

In CFX-11 the following secondary break-up models are available

– Reitz & Diwakar Model(1987)

- Wave instability on the surface of the drop leads to its breakup "wave" breakup model
- Bag and stripping regimes are taken into account

- Schmehl Model (2000)

- Two stages of deformation are considered: first droplet undergoes deformation to a disc shape; later on the final destruction takes place
- Experimental correlations are used for the breakup times

Secondary Droplet Break-up Models in CFX-11 (2)

- TAB Model (O'Rourke, 1987)
 - Droplet is considered as a spring-mass system
 - Solve deformation equation for droplet
 - Droplet breaks up after maximum deformation
- ETAB & CAB Model (Tanner, 1997&2003)
 - Both models are based on the TAB model
 - Modification of the predicted child droplet sizes
 - Delay initial droplet breakup to mimic primary breakup

Note: Important input parameters for these models (to be set up or defined from the primary breakup model)

- Injection velocity
- Initial droplet diameter
- Initial spray angle

Overview about the Test Cases

- Droplet in a cross flow
 - Liu et al. SAE Technical Paper, 930072 (1993).
- Non-evaporating spray into stagnant conditions
 - Hiroyasu & Kadota. SAE paper 740715 (1974)
 - Schneider. CIMAC Congress (1995)
 - Lee & Park. Fuel, Volume 81, 2417-2423 (2002)
 - Confidential cases (Bosch)
- **Evaporating spray into stagnant surrounding**
 - Koss et al. IDEA periodic report, RWTH Aachen (1992)

Hollow-cone spray ۲

- Schmidt et al. SAE paper, 1999-01-0496 (1999)

00

Sensitivity Studies

- Grid dependence
 - Grid size
 - Grid type (hex and prism elements)
 - Mesh movement
- Time step dependence
 - Eulerian time step
 - Lagrangian time step
- Dependence on number of computational particles
- Influence of initial turbulence flow field

Validation Criteria

- Global criteria
 - Radial penetration depth (S_R)
 - Spray angle
 - User specified percentage of a total spray mass
- S_R

- Local criteria
 - Droplet diameters
 - Droplet velocities
 - Droplet trajectories

Spray in Cross Flow: Set-Up

Liu, A.B, Mather, D. & Reitz, R.D. Modeling the Effects of Drop Drag and breakup on Fuel Sprays. SAE Technical Paper, 930072 (1993)

Case name	Air velocity (m/s)	Injected Weber Number
Case 2	59	37
Case 3	72	53
Case 4	100	102

Liquid – **Benz UCF-I fuel**: Density 824 kg/m³

Nozzle diameter = Initial droplet diameter = 170 mkm

Spray in Cross Flow

ANSYS, Inc. Proprietary

Conditions for Non-Evaporating Cases

Case Reference	Hiroyasu & Kadota (1974)	Schneider (1995)	Lee&Park (2002)			
Gas parameters						
Gas Type	N ₂	N ₂	Air			
Temperature, K	300	395	300			
Pressure, MPa	1.1, 3.0, 5.0	1.5	0.1			
Fuel properties						
Fuel type	C ₁₂ H ₂₆	C ₁₂ H ₂₆	Diesel			
Density, kg/m3	840	840	880			
Spray parameters						
Injection velocity (m/s)	102, 90, 86	183	241.8, 266.2			
Particle mass flow rate (g/s)	6.05, 5.36, 5.13	2.7	11.79, 14.4			
Nozzle diameter (mm)	0.3	0.15	0.3			
Injection Weber number	1800, 4000, 6100	4100	1000, 1200			

Breakup Model Validation: Hiroyasu and Kadota, Case 1

Breakup Model Validation: Hiroyasu and Kadota, Cases 1-3

ANSYS, Inc. Proprietary

Breakup Model Validation: Schneider Experiment

Breakup Model Validation: Lee & Park Experiment

Conditions for Evaporating Spray ANSYS®

Structure of Evaporating Spray

nHeptane Vapour Mass Fraction

nHeptane Liquid. Mean Particle Diameter

Liquid penetration depth 93% of liquid mass

Vapor penetration depth Fuel vapor mass fraction = 0.067

Breakup Model Validation: Evaporating Spray

LISA – Atomization Model

Linearized Instability Sheet Atomization

19

Use: Simulation of pressure swirl atomizers

Atomization processes is broken up into the following steps:

- Film formation
- Sheet breakup
- Atomization
- Film formation $\rightarrow h_0$
- Sheet breakup \rightarrow L
- Atomization $\rightarrow d_p, V_p$

Validation of LISA: Test Case Data

Injector	A		В	
Nozzle Diameter [µm]	560		458	
Injection Pressure [MPa]	4.76	6.12	6.80	6.80
Mass flow [g/s]	11.33	12.86	13.75	13.28
Injection duration [ms]	3.86	3.4	1.12	4.0
Spray cone angle (deg)	46	46	54	54
Liquid density [kg/m ³]	770	770	770	770

Spray Structures for Hollow-Cone Injection

ANSYS, Inc. Proprietary

Validation of LISA : Spray Penetration, Injector A

ANSYS, Inc. Proprietary

Validation of LISA: Droplet Atomization, Injector A

Validation of LISA: Spray Formation, Injector B, Case 1

Conclusions

- Numerous validation cases for spray simulations were set up and discussed. The considered validation cases cover a wide range of Weber numbers.
 - Droplet in a cross flow from We>30
 - High pressure direct injection up to We<10000.
 - Comprehensive Validation Report available!
- The comparisons showed that none of the models provides excellent agreement with the experiments for whole range of the considered Weber numbers.
 - Low Weber number cases (We ~ 100): all models except the Reitz&Diwakar model give reasonable results.
 - High Weber numbers (We ~ 1000): the ETAB, the CAB and the Reitz&Diwakar models provide good comparison with the experiment.
- Evaporating spray structure is reasonably reproduced by the simulations.
 - Although large uncertainties in determination of liquid mass densities

- Further comparison of local spray properties for validation of the existing breakup models for non-evaporating and evaporating sprays.
- Simulating reacting sprays.
- Investigation of spray-wall interaction
- Investigation of sprays in complex situations including all the above mentioned processes in a moving geometry (ICE).

