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OverviewOverview

• Introduction

• Validation cases

– Droplet in cross flow

– Solid-cone injections

• Non-evaporating sprays

• Evaporating spray

– Hollow-cone sprays

• Conclusions

• Outlook
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Spray FormationSpray Formation

• Primary Break-up

– In-nozzle effects (cavitation, turbulence induced disturbances)

– Instabilities on liquid-gas interface lead to primary break-up

• Secondary Break-up
– Droplets become unstable under the action of forces induced by their 

motion relative to the continuous phase

Liquid
Liquid Core Dispersed Flow

Dense Spray Dilute Spray

Primary Break-up Secondary Break-up

Injection Nozzle
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Secondary Droplet Break-up 

Models in CFX-11

Secondary Droplet Break-up 

Models in CFX-11

In CFX-11 the following secondary break-up models are available

– Reitz & Diwakar Model(1987)

• Wave instability on the surface of the drop leads to its breakup –
“wave” breakup model

• Bag and stripping regimes are taken into account

– Schmehl Model (2000)

• Two stages of deformation are considered: first droplet 
undergoes  deformation to a disc shape; later on the final 
destruction takes place

• Experimental correlations are used for the breakup times 
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– TAB Model (O’Rourke, 1987)

• Droplet is considered as a spring-mass system

• Solve deformation equation for droplet

• Droplet breaks up after maximum deformation 

– ETAB & CAB Model (Tanner, 1997&2003)

• Both models are based on the TAB model

• Modification of the predicted child droplet sizes

• Delay initial droplet breakup to mimic primary breakup

Secondary Droplet Break-up 

Models in CFX-11 (2)

Secondary Droplet Break-up 

Models in CFX-11 (2)

Note: Important input parameters for these models 

(to be set up or defined from the primary breakup model)
• Injection velocity
• Initial droplet diameter
• Initial spray angle
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Overview about the Test CasesOverview about the Test Cases

• Droplet in a cross flow

– Liu et al. SAE Technical Paper, 930072 (1993).

• Non-evaporating spray into stagnant conditions

– Hiroyasu & Kadota. SAE paper 740715 (1974) 

– Schneider. CIMAC Congress (1995 )

– Lee & Park. Fuel, Volume 81, 2417-2423 (2002) 

– Confidential  cases (Bosch)

• Evaporating spray into stagnant surrounding

– Koss et al. IDEA periodic report, RWTH Aachen 
(1992) 

• Hollow-cone spray

– Schmidt et al. SAE paper, 1999-01-0496 (1999)
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Sensitivity StudiesSensitivity Studies

• Grid dependence

– Grid size

– Grid type (hex and prism elements)

– Mesh movement

• Time step dependence

– Eulerian time step

– Lagrangian time step

• Dependence on number of computational particles

• Influence of initial turbulence flow field
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Validation CriteriaValidation Criteria

• Global criteria

– Radial penetration depth 
(SR)

– Spray angle

– User specified percentage 
of a total spray mass

• Local criteria

– Droplet diameters

– Droplet velocities

– Droplet trajectories

SR

ΘΘΘΘ
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Spray in Cross Flow: Set-UpSpray in Cross Flow: Set-Up

16 m/s

Air jet

z

x

Trajectory and drop

size measurements

opening

wall wall

wall

wall

inlet

102102102102100Case 4

5353535372Case 3

3737373759Case 2

InjectedInjectedInjectedInjected
WeberWeberWeberWeber
NumberNumberNumberNumber

Air Air Air Air 
velocity velocity velocity velocity 
((((m/sm/sm/sm/s))))

Case Case Case Case 
namenamenamename

Liu, A.B, Mather,  D. & Reitz, R.D. Modeling the Effects of Drop Drag 
and breakup on Fuel Sprays. SAE Technical Paper, 930072 (1993)

Liquid – Benz UCF-I fuel:
Density 824 kg/m3

Nozzle diameter = 

Initial droplet diameter = 170 mkm
Steady state computations



© 2006 ANSYS, Inc.  All rights reserved. 10 ANSYS, Inc. Proprietary

X [m]

Z
[m

]

0 0.004 0.008 0.012

0

0.004

0.008

0.012

Experiment
Reitz&Diwakar
Schmehl
TAB
ETAB
CAB

Spray in Cross FlowSpray in Cross Flow

X [m]

S
M

D
[m

]

0 0.002 0.004 0.006 0.008 0.01
0

0.0001

0.0002

0.0003

Experiment
Reitz&Diwakar
Schmehl
TAB
ETAB
CAB

We = 37

Droplet trajectories

SMD along trajectories



© 2006 ANSYS, Inc.  All rights reserved. 11 ANSYS, Inc. Proprietary

Conditions for Non-Evaporating CasesConditions for Non-Evaporating Cases

1000, 120041001800, 4000, 6100Injection Weber 
number

0.30.150.3Nozzle diameter (mm)

11.79, 14.42.76.05, 5.36, 5.13Particle mass flow rate 
(g/s)

241.8, 266.2183102, 90, 86Injection velocity (m/s)

Spray parameters

880840840Density, kg/m3

DieselC12H26C12H26Fuel type

Fuel properties

0.11.51.1, 3.0, 5.0Pressure, MPa

300395300Temperature, K

AirN2N2Gas Type

Gas parameters

Lee&Park

(2002)

Schneider (1995)Hiroyasu & Kadota
(1974)

Case Reference
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Breakup Model Validation: Hiroyasu 

and Kadota, Cases 1-3

Breakup Model Validation: Hiroyasu 

and Kadota, Cases 1-3
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Breakup Model Validation: Schneider 

Experiment

Breakup Model Validation: Schneider 

Experiment

The mean droplet velocity
@ 166d0=25mm
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Breakup Model Validation: Lee & Park 

Experiment

Breakup Model Validation: Lee & Park 

Experiment
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Conditions for Evaporating SprayConditions for Evaporating Spray

10000Injected Weber number

215Injection Velocity [m/s]

0.2Droplet diameter [mm]

1.3Injection rate [ms]

0.2Nozzle diameter [mm]

0.02Surface tension [N/m2]

684Density [kg/m3]

nHeptane 

(C7H16)

Droplets type 

4.62Particle Mass Flow Rate [g/s]

N2Gas Type

5Gas Pressure [MPa]

800Gas Temperature [K]



© 2006 ANSYS, Inc.  All rights reserved. 17 ANSYS, Inc. Proprietary

Structure of Evaporating SprayStructure of Evaporating Spray

Liquid penetration depth
93% of liquid mass

Vapor penetration depth

Fuel vapor mass fraction = 0.067
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Breakup Model Validation: 

Evaporating Spray

Breakup Model Validation: 

Evaporating Spray
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LISA – Atomization ModelLISA – Atomization Model

Use: Simulation of pressure swirl atomizers

Atomization processes is broken
up into the following steps:

• Film formation
• Sheet breakup
• Atomization

• Film formation ���� h0

• Sheet breakup ���� L
• Atomization ���� dp, Vp

Linearized Instability Sheet Atomization

h0

L

Vp

dp

Secondary 
Breakup
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Validation of LISA:  Test Case DataValidation of LISA:  Test Case Data

770770770770Liquid density [kg/m3]

54544646Spray cone angle (deg)

4.01.123.43.86Injection duration [ms]

13.2813.7512.8611.33Mass flow [g/s]

6.806.806.124.76Injection Pressure [MPa]

458560Nozzle Diameter [µm]

BAInjector
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Spray Structures for Hollow-Cone 

Injection

Spray Structures for Hollow-Cone 

Injection

Pre Spray

Main Spray
Secondary

breakup
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Validation of LISA : Spray Penetration,

Injector A

Validation of LISA : Spray Penetration,

Injector A

∆∆∆∆p=4.76 MPa

Pre and Main Spray
tip penetrations

Note: Pre spray mass flow
rate was assumed to be the
same as for the main spray

∆∆∆∆p=6.12 MPa
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Validation of LISA: Droplet 

Atomization, Injector A 

Validation of LISA: Droplet 

Atomization, Injector A 

Sauter Mean Diameter @ 
Plane 39 mm downstream 

of Injector A

Note: Predicted SMD values
are the result of atomization 
and secondary droplet breakup

∆∆∆∆p=4.76 MPa

∆∆∆∆p=6.12 MPa
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Validation of LISA: Spray Formation, 

Injector B, Case 1

Validation of LISA: Spray Formation, 

Injector B, Case 1

2.50 ms

0.83 ms
1.66 ms 2.49 ms

0.80 ms

1.70 ms
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ConclusionsConclusions

• Numerous validation cases for spray simulations were set up and 
discussed. The considered validation cases cover a wide range of Weber 
numbers.
– Droplet in a cross flow  - from We>30 

– High pressure direct injection up to We<10000.

– Comprehensive Validation Report available!

• The comparisons showed that none of the models provides excellent 
agreement with the experiments for whole range of the considered Weber 
numbers. 

– Low Weber number cases (We ~ 100): all models except the 
Reitz&Diwakar model give reasonable results.

– High Weber numbers (We ~ 1000): the ETAB, the CAB and the 
Reitz&Diwakar models provide good comparison with the experiment.

• Evaporating spray structure is reasonably reproduced by the simulations.

– Although large uncertainties in determination of liquid mass densities
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OutlookOutlook

• Further comparison of local spray properties for validation of 
the existing breakup models for non-evaporating and 
evaporating sprays.

• Simulating reacting sprays.

• Investigation of spray-wall interaction

• Investigation of sprays in complex situations including all the 
above mentioned processes in a moving geometry (ICE).
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Thank You!


