Validation of Multiphase Flow Modeling in ANSYS CFD

Th. Frank, C. Lifante, A.D. Burns Head Funded CFD Development ANSYS Germany <u>Thomas.Frank@ansys.com</u>

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Outline

Introduction

- MPF model validation for adiabatic air-water flows
- Polydisperse MPF model validation – MUSIG model
- Bartolomej testcase (PWR)
- Lee testcase (BWR)
- Wall boiling with conjugate heat transfer (CHT)
- Summary & Outlook

ANSYS as Part of the German CFD Network in Nuclear Reactor Safety

ANSYS[®]

Methodology of CFD Model Development & Validation

Eulerian MPF Modeling - The Particle Model

Mass weighted averaged conservation equations

Mass, momentum, energy transport equations for each phase

$$\frac{\partial}{\partial t} (\rho_k r_k) + \nabla (\rho_k r_k \mathbf{U}_k) = \sum_{\substack{l=1\\l\neq k}}^N \Gamma_{kl}$$
$$\frac{\partial}{\partial t} (\rho_k r_k \mathbf{U}_k) + \nabla \cdot (\rho_k r_k \mathbf{U}_k \mathbf{U}_k) = -r_k \nabla P - \nabla \cdot (r_k \Pi^k) + \mathbf{F}_k + \mathbf{I}_k$$
$$\mathbf{I}_k = \underbrace{\mathbf{F}}_{\Gamma} + \underbrace{\mathbf{F}}_{D} + \underbrace{\mathbf{F}}_{L} + \underbrace{\mathbf{F}}_{WL} + \underbrace{\mathbf{F}}_{TD} + \underbrace{\mathbf{F}}_{VM}$$
virtual mass

lubrication

dispersion

- turbulence models for each phase (e.g. k-ε / k-ω SST model, 0-eq. disp. phase turb. Model)
- heat transfer equations for each phase with interfacial transfer closure
- interfacial forces need empirical closure

mom. transfer

• high void fraction effects, bubble induced turbulence, etc.

Lift force, Wall lubrication force & turbulent dispersion

Lift force:

- due to asymmetric wake and deformed asymmetric particle shape
- \rightarrow Tomiyama C_L correlation

$$\mathbf{F}_{L} = \mathbf{C}_{L} r_{G} \rho_{L} (\mathbf{U}_{L} - \mathbf{U}_{G}) \times \nabla \times \mathbf{U}_{L}$$

 $C_L = C_L(\operatorname{Re}_P, \operatorname{Re}_\nabla, Eo)$

AN SY

Wall Iubrication force:

surface tension prevents bubbles from approaching solid walls

→Antal, Tomiyama & Frank W.L.F. models

$$\mathbf{F}_{WL} = -\mathbf{C}_{wall} r_G \rho_L \left| \mathbf{U}_{rel} - (\mathbf{U}_{rel} \cdot \mathbf{n}_W) \mathbf{n}_W \right|^2 \mathbf{n}_W$$

$$C_{wall} = C_W (\text{Eo}, \text{y/d}_P)$$

Turbulent dispersion force:

turbulent dispersion = action of turb. eddies via interphase drag

$$\mathbf{F}_{TD} = \frac{3}{4} \rho_F \frac{\overline{C_D}}{d_P} \frac{v_{tF}}{\sigma_{rF}} | U_F - U_P | \overline{r_P} \left(\frac{\nabla \overline{r_P}}{\overline{r_P}} - \frac{\nabla \overline{r_F}}{\overline{r_F}} \right)$$

FAD model by Burns et al. (ICMF'04)

Bubbly Flow Model Validation FZR MT-Loop and TOPFLOW Database

CFX Model Validation MT-Loop & TOPFLOW Test Matrix

- M01 experimental test series on MT-Loop
- evaluation based on air volume fraction profiles at L/D=59,2 (z=3.03m) from the sparger system
- Image: numerically investigated test case conditions

Validation: Bubbly Flows Turbulent Dispersion Force

Monodispersed Bubbly Flow MT-Loop Test Case FZR-019

© 2009 ANSYS, Inc. All rights reserved.

ANSYS

Monodispersed Bubbly Flow MT-Loop Test Case FZR-052

© 2009 ANSYS, Inc. All rights reserved.

ANSYS

TOPFLOW Test Facility @ FZD

TOPFLOW-074 Test Case Conditions from Test Matrix

- TOPFLOW-074 test case was subject of validation in the past
- Superficial velocities:

Wire-mesh sensor measurements at locations:

z=±10, 15, 20, 40, 80, 160, 250, 520mm

3d Bubbly Flow Around Obstacle Water Velocity Comparison

NSYS[®]

- Comparison
 CFD ⇔ Experiment
- Absolute water velocity distribution in symmetry plane
- Import of exp. data into CFX-Post
- Pre-interpolation of exp. data to ∆z=0.01m

3d Bubbly Flow Around Obstacle Air Void Fraction Comparison

ANSYS[®]

- Comparison
 CFD ⇔ Experiment
- Air void fraction distribution in symmetry plane

3d Bubbly Flow Around Obstacle Air Void Fraction Comparison

3d Bubbly Flow Around Obstacle Cross-Sectional Air Void Fraction

z=520mm

- Quantitative data comparison @ cross sections z=±10, ±15, ±20, ±40, ±80, ±160, ±250, ±520mm:
 - absolute water velocity
 - air volume fraction

z=-80mm y=0mm

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

z=20mm y=0mm

ANSYS, Inc. Proprietary

z=80mm y=0mm

© 2009 ANSYS, Inc. All rights reserved.

z=250mm Norm. Air Volume Fraction [-] 2.0 y=0mm 1.5 1.0 0.5 0.0 -100 2.5 Absolute Water Velocity [m/s] 2.0 1.5 1.0 0.5

© 2009 ANSYS, Inc. All rights reserved.

Polydispersed Bubbly Flow Caused by Breakup & Coalescence

Transition from disperse bubbly flow to slug flow:

Balance between:

- coalescence of bubbles
- turbulent bubble breakup
- →bubble size distribution; polydisperse bubbly flow
- Counter-current radial motion of small and large bubbles;
 more than one velocity field

→new population balance model (inhomogeneous MUSIG)

Inhomogeneous MUSIG Model

- momentum equations are solved for N gas phases (vel. groups)
- size fraction equations for M_i bubble size classes in each vel. group
- bubble coalescence and break-up over all ΣM_i MUSIG groups

Validation of 3x7 Inhomogeneous MUSIG Model on TOPFLOW-074

TOPFLOW Test Facility @ FZD

Courtesy of FZD

28

ANSYS, Inc. Proprietary

Condensation Test Case

- P=2 [MPa]
- J_w=1.0 [m/s]
- J_s=0.54 [m/s]
- T_s=214.4 [°C]
- T_w =210.5 [°C] $\rightarrow \Delta T_w$ =3.9 [K]
- D_{inj} = 1 [mm]
- Detailed experimental data:
 - Bubble size distribution

Radial steam volume fraction distribution

Dirk Lucas, Horst-Michael Prasser: "Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow",

Nuclear Engineering and Design, Volume 237, Issue 5, March 2007, Pages 497-508

Physical Model Setup

Standard MUSIG & Extended MUSIG

- 25 bubble size classes
- 3 velocity groups: 0→3 [mm],3→6 [mm], 6→30 [mm]
- Arranged in accordance with critical Tomiyama bubble diameter for bubble size dependent lift force
- Break up model: Luo & Svendsen (F_B=0.025)
- Coalescence model: Prince & Blanch (F_c=0.05)

TOPFLOW Condensation Testcase

	Inlet BC	Inlet Position	WLF	TD Force	Heat Transfer
Config 1	D _{inj} = 4mm	Source point @ Wall	-	-	-
Config 2	D _{inj} = 4 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}
Config 3	D _{inj} = 1 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}

Results: Vapor Volume Fraction

ANSYS[®]

Results: Vertical Averaged Steam Distribution

Results: Radial Steam Distribution **ANSYS**

© 2009 ANSYS, Inc. All rights reserved.

34

ANSYS, Inc. Proprietary

Results: Radial Steam Distribution **ANSYS**

Results: Bubble Size Distribution

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary
Results: Bubble Size Distribution

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

CFD Simulation for Fuel Assemblies in Nuclear Reactors

ANSYS[®]

CFD Simulation for Fuel Assemblies in Nuclear Reactors

ANSYS[®]

Multiphase Flow Regimes for Boiling Water Flow

Flows with Subcooled Boiling (DNB) – RPI-Wall Boiling Model

Mechanistic wall heat partioning model:

RPI-Wall Boiling Model – Submodels for Model Closure

Submodels for closure of RPI wall boiling model:

- Nucleation site density: Lemmert & Chawla, User Defined
- Bubble departure diameter:
 - Tolubinski & Kostanchuk, Unal, Fritz, User Defined
- Bubble detachment frequency:
 - Terminal rise velocity over Departure Diameter, User Defined
- Bubble waiting time:
 - Proportional to Detachment Period, User Defined
- Quenching heat transfer: Del Valle & Kenning, User Defined
- Turbulent Wall Function for liquid convective heat transfer coefficient
- Correlation for bulk flow mean bubble diameter required:
 - → e.g. Kurul & Podowski correlation via CCL

Supported combination of wall boiling & CHT in the solid

- GGI & 1:1 solid-fluid interfaces

RPI Wall Boiling Model in the ANSYS CFX-Pre 12.0 GUI

Fluid Pair Models Initialisation
_
•
•
ŧ
ŧ
<u>•</u>
<u> </u>
•

otion	RPI Model
Fixed Yplus for Liqu	id Subcooling
Fixed Yplus	250.0
Mass Source Under	Relaxation
Mass Source Under Rel	0.1
🔽 Bubble Departure D	Piameter
Option	Tolubinski Kostanchuk
Ref. Departure Diam.	0.6E-3 [m]
Max. Departure Diam.	1.4E-3 [m]
Liquid Subcooling Scale	45.0 [K]
🔽 Wall Nucleation Site	Density
Option	Lemmert Chawla
Site Density	7.9384e5 [m^-2]
Ref. Wall Superheat	10.0 [K]
Power Law Index	1.805
🔽 Bubble Detachment	Frequency
Option	Terminal Velocity over Departure Diameter
Drag Coefficient	1.0
🔽 Bubble Waiting Tim	e
Option	Proportional to Detachment Period
Waiting Time Fraction	0.8
🔽 Liquid Quenching H	eat Transfer Coefficient
Option	Del Valle Kenning
🔽 Bubble Diam. Influe	nce Factor
Factor	2.0
🔽 Max. Area Frac. of	Bubble Influence
Max. Area Fraction	0.5

43

The Bartolomej et al. Testcase (1967,1982)

© 2009 ANSYS, Inc. All rights reserved.

The Bartolomej Test Case

Variable	Value
Ρ	4.5MPa
R	7.7 mm
G _{in}	900 kg/(s m2)
ġ	0.57MW/m2
Subcooling	58.2 K

© 2009 ANSYS, Inc. All rights reserved.

Multiphase Flow Model

NSYS[®]

• Steam-Water 2-phase flow:

- Water: continuous phase
- Water Steam: disperse bubbles (particle model)

• Material properties (EOS):

IAPWS-IF97 water - water steam property tables

Modified law for interfacial area

- Kurul & Podowski type bulk bubble diameter: $d_B = f(T_{sub})$
- Accounting for higher volume fraction of the steam phase

Turbulence Model

- SST turbulence model for continuous phase
- 0-eq. disperse phase turb. model + Sato bubble induced turbulence

Inter-Phase Mass, Momentum and Energy Transfer

Mass transfer model

- Thermal Phase Change Model (bulk boiling/condensation model)
- RPI wall boiling model

Momentum transfer models

- Grace drag
- FAD turbulent dispersion force
- Tomiyama lift force
- Wall lubrication force (none, Antal, Tomiyama)

Heat transfer models

- Water: Thermal Energy
- Water Steam: Saturation temperature
- Two resistance model
- Ranz Marshall correlation for bubble heat transfer

Numerical Grids

 Validation on mesh hierarchy with regular refinement factor of 4 (2d meshes)

Grid	Grid1	Grid2	Grid3
# Nodes (uniform)	20x150	40x300	80x600
Max y ⁺	264	133	69
Δt [s]	10 ⁻²	10 ⁻³	5x10 ⁻⁴

Grid1

Grid 2

50

Grid 3

51

Comparison to Experimental Data (NSYS)

© 2009 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Comparison to Experimental Data - Parameter & Model Variation

Influence of wall lubrication force model:

The Lee et al. Testcase (ICONE-16, 2008)

54

© 2009 ANSYS, Inc. All rights reserved.

Lee et al. (2008) Testcase

- Axially symmetric circular annulus
- Radial dimensions
 - Inner radius of outer tube: R = 18.75 mm
 - Outer radius of inner tube: $R_0 = 9.5 \text{ mm}$
 - Core radius: $R_c = 3/4 R_0$
 - Annulus width: 9.25 mm

Axial dimensions

- Total heating section height: $L_T = 1670 \text{ mm}$
- Distance between inlet and measuring plane:
 L_M = 1610 mm

Radial Position: R_P

- Dimensionless, radial distance from inner tube $(R_P = 0)$ to outer tube $(R_P = 1)$ across the annulus:

$$R_P = \frac{\left(r - R_0\right)}{\left(R - R_0\right)}$$

Geometry and Mesh

© 2009 ANSYS, Inc. All rights reserved.

Mesh Hierarchy

Mesh Name		Gric (coa	d 01 arse)	Grid 02 (medium)		Grid 03 (fine)	
Domains(1 = HFO, 2 = CHT)*		1	2	1	2	1	2
No. of Nodes		1: 6342 2: 12684		1: 24682 2: 49364		1: 97362 2: 194724	
No. of Elements (hexahedra)		1: 20x150 2: 40x150		1: 40x300 2: 80x300		1: 80x600 2: 160x600	
y + _{max}	Set16	~84		~4	·1	~	24
(at 1 st node near wall)	Set25	~88		~45		~25	
Tstep ∆t [s]	Set16	0.001		0.0	02	0.0	002
	Set25	0	.1	0.01	125	0.0	002

Selection of Extreme/Limiting Testcase Conditions

• Concentrating on 2 (out of 12) datasets:

Set 25 (least of all steam)

Parameter comparison

Set No.*	q" [kW m^-2]	G [kg m^-2s]	T _{in} [°C]	P _{in} [kPa]
16	320.4	718.8	83.8	121.1
25	220.0	1057.2	90.1	134.4

Required Parameter Modifications in Comparison to PWR Conditions

Found that submodels need modifications for BWR conditions (see also Tu&Yeoh, Anglart et al., Krepper, Koncar):

- 1. Bulk bubble diameter (BBD) Kurul & Podowski \rightarrow d_{B,max}~1.5mm @ wall modified d_B law \rightarrow d_{B,max}~4.0mm @ wall
- 2. Bubble departure diameter (BDD) Tolubinski & Kostanchuk → $d_W \sim 0.5$ mm max. const. bubble dept. diam. → $d_W = 1$ mm - 3mm
- 3. A₂ Wall area fraction influenced by steam bubbles default \rightarrow 0.5 increased up to 2.0

BBD & BDD Modifications Test Matrix Overview

- Trying to systematically increase Bubble Departure Diameter to investigate its influence on Heat Flux to Vapor (Q_v) profile
 - \rightarrow Test series with increasing BDD starting from d_{W.max} \thickapprox 0.5 mm
 - \rightarrow 1 mm; 2 mm; 3 mm
 - \rightarrow T&K * 4.0

	BDD Tolubinsky & Kostanchuk	BDD User defined d _w [mm]
K&P	yes	-
bbdmod01	-	1 = const.
bbdmod02	-	2 = const.
bbdmod03	-	3 = const.

BBD Modification / Set 25: Gas Volume Fraction @ z = 1610 [mm]

Set25 : Bulk Diameter Modification Comparison: Gas Volume Fraction (r_G)

BDD Modification / Set 25: Gas Volume Fraction @ z = 1610 [mm]

Set25 Bubble Departure Diameter Modification Comparison: Gas Volume Fraction (r_G)

A_{2F} Limiter Modification: Results Set 25, Gas Volume Fraction @ z=1610[mm]

Set25 A_{2F} Mod Comparison: Gas Volume Fraction (r_G)

Grid Independency: Results Set 25, Gas Volume Fraction @ z = 1610 [mm]

Set25 New Grid Comparison: Gas Volume Fraction (r_G)

The Lee et al. Testcase (ICONE-16, 2008) - Conjugate Heat Transfer -

65

© 2009 ANSYS, Inc. All rights reserved.

Heat Source in Solid Material & Conjugate Heat Transfer Prediction

HFO (Heat Flux Only): Fluid Domain (Annulus) → area specific heat flux boundary condition #

CHT (Conjugated Heat Transfer): Fluid Domain (Annulus) + Solid Domain (Non-Heated Rod Shell) +

+ Solid Domain (Heated Rod Core) → volume specific heat source #

 Specific energy source in solid material, Set25 (equiv. to q_{Wall}):

E_{Core}=8.23.10⁷ [W/m³]

 Temperature and Steam VF distribution in vertical plane

Set25 & CHT: Water temperature monitors Δx_w =1.5mm, Δz =83.5mm,

Set25 & CHT: Grid independence for temperature distribution @ z=1610[mm]

Set25 & CHT: Vapour VF distribution @ z=1610[mm]

New R&D Consortium

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

 Ultrafast electron beam X-ray CT of fuel rod bundle in titanium pipe on TOPFLOW @ FZD:

ANSYS. Inc. Proprietary
Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

Wall boiling simulation in a 3x3 rod bundle with spacer grid:

Wall superheat T_w-T_{Sat}

Summary & Outlook

- Overview on ANSYS CFD multiphase flow model development and validation
- Continuous effort in model improvement, R&D
- Emphasis in validation on BPG, comparison to data, geometry & grid independent modeling
- High interoperability of physical models

• Outlook:

- Ongoing & customer driven CFD model development
- Research cooperation with Industry & Academia
- More & more complex MPF phenomena
- Coupling of wall boiling model to inhomogeneous MUSIG
- Extension of the wall heat partitioning in wall boiling model

