Prediction of Polydisperse Steam Bubble Condensation in Subcooled Water using the Inhomogeneous MUSIG Model

> C. Lifante, T. Frank, A. Burns ANSYS conxita.lifante@ansys.com

> > D. Lucas, E. Krepper Forschungszentrum Dresden-Rossendorf

© 2009 ANSYS, Inc. All rights reserved.

ANSYS[®]

Outline

- Motivation
- Model description
- Validation
 - TOPFLOW facility & condensation experiment
 - $CFD \Leftrightarrow Experiment \ comparison$
 - Previous approaches vs. extended MUSIG
 - Improvements in the extended MUSIG simulations
- Summary & conclusions

Outline

Motivation

Model description

Validation

- TOPFLOW facility & condensation experiment
- CFD ⇔ Experiment comparison
 - Previous approaches vs. extended MUSIG
 - Improvements in the extended MUSIG simulations
- Summary & conclusions

Motivation

NRS applications:

- Subcooled boiling in nucl. react fuel assemblies
- Steam injection into pools
- Steam bubble entrainment in subcooled liquids by impinging jets
- Cond./evap. rates depend on IAD
 → bubble size distribution
- Need of polydispersed inhomogeneous simulations
- Need to deal with phase change effects

Outline

Motivation

Model description

Validation

TOPFLOW facility & condensation experiment

– CFD ⇔ Experiment comparison

- Previous approaches vs. extended MUSIG
- Improvements in the extended MUSIG simulations
- Summary & conclusions

Standard Inhomog. MUSIG Model **ANSYS**

 Small bubbles move with the fluid phase

 Large bubbles are more influenced by buoyancy

 Lift coefficient changes its sign at a critical size; depends on $\sigma(p,T)$

Standard Inhomog. MUSIG Model **ANSYS**[®]

• MUSIG setup:

- Definition of the initial diameter classes (d_i)
 - Mass classes used
- Definition of velocity groups (v_i)
 - Homogeneous/Inhomogeneous
 - Which d_i belong to each v_i
- 1 size fraction equation for each bubble diameter
- 1 momentum equation for each velocity group

© 2009 ANSYS, Inc. All rights reserved.

Outline

- Motivation
- Model description
- Validation
 - TOPFLOW facility & condensation experiment
 - $CFD \Leftrightarrow Experiment \ comparison$
 - Previous approaches vs. extended MUSIG
 - Improvements in the extended MUSIG simulations
- Summary & conclusions

TOPFLOW Test Facility @ FZD

Courtesy of FZD

10

© 2009 ANSYS, Inc. All rights reserved.

Condensation Test Case

- P=2 [MPa]
- J_w=1.0 [m/s]
- J_s=0.54 [m/s]
- T_s=214.4 [°C]
- T_w=210.5 [°C] $\rightarrow \Delta$ T_w=3.9 [K]
- D_{inj} = 1 [mm]
- Detailed experimental data:
 - Bubble size distribution

Radial steam volume fraction distribution

Dirk Lucas, Horst-Michael Prasser: "Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow",

Nuclear Engineering and Design, Volume 237, Issue 5, March 2007, Pages 497-508

Condensation Test Case

Numerical Setup

ANSYS[®]

- 1/6 of geometry simulated, 60°
- Symmetry b.c.
- 260.442 elements*
- 12 x Injection nozzles modeled by SOURCE POINTS
 - D_{inj} modified (4mm) for v_{inj}
- SST turbulence model
- F_{drag} , F_{lift} , F_{TD} considered

Physical Model Setup

Locally Monodisperse

– Particle diameter: constant number of bubbles $d_P = d_P(d_P|_{Inlet}, N_P|_{Inlet})$

Standard MUSIG & Extended MUSIG

- 25 bubble size classes
- 3 velocity groups:
 - 0→3 [mm],3→6 [mm], 6→30 [mm]
- Break up model: Luo & Svendsen (F_B=0.025)
- Coalescence model: Prince & Blanch (F_c=0.05)

Results: Vertical averaged steam distribution

Results: Radial steam distribution (ANSYS)

Results: Radial steam distribution (ANSYS)

Results: Bubble size distribution (ANSYS)

Results: Bubble size distribution

© 2009 ANSYS, Inc. All rights reserved.

19

ANSYS[®] **Results: Tests Comparison** 60 Config 1 50 Steam Volume Fraction [%] 40 30 Config 3 20 Config 2 10 20 40 60 80 100 **Radial Position [mm]** Erweit. MUSIG Erweit. MUSIG + SP@75 mm Erweit. MUSIG + SP@75 mm + WLF Erweit. MUSIG + SP@75 mm + WLF + CTD=1.5 Erweit. MUSIG + SP@75 mm + WLF + CTD=1.5 + Nu (Tomiyama) Erweit. MUSIG + SP@75 mm + WLF + CTD=1.5 + Nu (Tomiyama) + D=1 mm Experiment Level C © 2009 ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary 20

TOPFLOW Condensation case

Config 1	D _{inj} = 4mm	Source point @ Wall	-	-	-
Config 2	D _{inj} = 4 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}
Config 3	D _{inj} = 1 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}

Results: Vapor Volume Fraction (NSYS)

Results: Vertical averaged steam ANSYS distribution

Results: Radial steam distribution (ANSYS)

Results: Radial steam distribution (ANSYS)

Results: Bubble size distribution

© 2009 ANSYS, Inc. All rights reserved.

Results: Bubble size distribution

© 2009 ANSYS, Inc. All rights reserved.

Outline

- Motivation
- Model description
- Validation
 - TOPFLOW facility & condensation experiment
 - CFD \IGRIS Experiment comparison
 - Previous approaches vs. extended MUSIG
 - Improvements in the extended MUSIG simulations
- Summary & conclusions

Summary & Conclusions

- An extension of the MUSIG model in ANSYS CFX in order to catch phase change effect was implemented
- Condensation case at the TOPFLOW geometry used for validation
 - The comparison with previous approaches proved the necessity of the extension
 - Qualitatively better results, however improvements in the Setup were required
 - A parameter study led to also quantitative satisfactory results
- Implementation performed in a customized solver based on ANSYS CFX 12

© 2009 ANSYS, Inc. All rights reserved.