Extension of the Multiple-Size Group (MUSIG) Model to Phase Change Effects

C. Lifante, T. Frank, A. Burns ANSYS, PBU conxita.lifante@ansys.com

> D. Lucas, E. Krepper Forschungszentrum Dresden-Rossendorf

NNSYS[®]

Outline

- Motivation
- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - $CFD \Leftrightarrow Experiment \ comparison$
- Summary & conclusions

Outline

Motivation

- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - CFD \Leftrightarrow Experiment comparison
- Summary & conclusions

Motivation

NRS applications:

- Subcooled boiling in nucl. react fuel assemblies
- Steam injection into pools
- Steam bubble entrainment in subcooled liquids by impinging jets
- Cond./evap. rates depend on IAD
 → bubble size distribution
- Need of polydispersed inhomogeneous simulations
- Need to deal with phase change effects

Outline

- Motivation
- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - CFD \Leftrightarrow Experiment comparison
- Summary & conclusions

Standard Inhomog. MUSIG Model

•Small bubbles move with the fluid phase

•Large bubbles are more influenced by buoyancy

•Lift coefficient changes its sign at a critical size; depends on $\sigma(p,T)$

Standard Inhomog. MUSIG Model (NSYS)

MUSIG setup:

- Definition of diameter classes (d_i)
 - Mass classes used
- Definition of velocity groups (v_i)
 - Homogeneous/Inhomogeneous
 - Which d_i belong to each v_i
- 1 size fraction equation for each bubble diameter
- 1 momentum equation for each velocity group

Model Extension description

Outline

- Motivation
- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - CFD \Leftrightarrow Experiment comparison
- Summary & conclusions

Verification

Development steps:

- Implementation

Verification of the implementationSet of test cases

- Consistency check with other modules V
- Comparison to analytical solutions

Validation of the model wrt. experiment

Verification: Small Condensation Case

Verification: Small Condensation Case

Verification: Small Condensation Case

Outline

- Motivation
- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - $CFD \Leftrightarrow Experiment \ comparison$
- Summary & conclusions

TOPFLOW Test Facility @ FZD

ANSYS[®]

Courtesy of FZD

Condensation Test Case

- P=2 [MPa]
- J_w=1.0 [m/s]
- J_s=0.54 [m/s]
- T_s=214.4 [°C]
- T_w =210.5 [°C] $\rightarrow \Delta T_w$ =3.9 [K]
- D_{inj} = 1 [mm]
- Detailed experimental data:
 - Bubble size distribution
 - Radial steam volume fraction distribution

Dirk Lucas, Horst-Michael Prasser: "Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow", Nuclear Engineering and Design, Volume 237, Issue 5, March 2007, Pages 497-508

with sub-cooling (dT=4 K)

Condensation Test Case

ANSYS, Inc. Proprietary

Numerical Setup

- 1/6 of geometry simulated, 60°
- Symmetry b.c.
- 260.442 elements
- 12 x Injection nozzles modeled by SOURCE POINTS

18

- D_{inj} modified (4mm) for v_{inj}
- SST turbulence model
- F_{drag}, F_{lift}, F_{TD} considered

Case 1: Locally Monodisperse

Particle diameter: constant number of bubbles
 d_P=d_P(d_P|_{Inlet}, N_P|_{Inlet})

Case 2-3 : Standard MUSIG & Extended MUSIG

- 25 bubble size classes
- 3 velocity groups:
 - 0→3 [mm],3→6 [mm], 6→30 [mm]
- Break up model: Luo & Svendsen (F_B=0.025)
- Coalescence model: Prince & Blanch (F_c=0.05)

Results: Vapor Volume Fraction

ANSYS[®]

Results: Locally Monodisperse

Results: Locally Monodisperse

ANSYS[®]

ANSYS[®]

[**mm**/%]

= Solver Level L ~ imes~ Experiment Level L

ANSYS[®]

Outline

- Motivation
- Model description
- Verification
- Validation
 - TOPFLOW facility & condensation experiment
 - CFD ⇔ Experiment comparison
- Summary & conclusions

- An extension of the MUSIG model in ANSYS CFX in order to catch phase change effect was implemented
- Successful tests for verification
- Condensation case at the TOPFLOW geometry used for validation
 - Improved bubble size distribution prediction
 - Steam volume fraction prediction displaced to the wall
 - Work in progress:
 - Increase injection velocity
 - Inclusion of WLF

Acknowledgments

BMWi Funded Project:

 "Development of CFD Software for the simulation of multi-dimensional flows in the reactor cooling system (Nr. 150-1328)"

• All colleagues in FZD & ANSYS involved. Thanks/Danke!

Thank You!

ANSYS[®]