Advances in the Simulation of Boiling Steam-Water Flow through Fuel Assembly Subchannels and Rod Bundles

Th. Frank, C. Lifante, F. Reiterer
ANSYS Germany
Thomas.Frank@ansys.com
Outline

• Introduction
• Development of subcooled nucleate boiling model:
 – The modified RPI wall boiling model
 – Extensions to the RPI model
 – Coupling of RPI & MUSIG
• Validation & application of the boiling model in ANSYS CFD
 – Boiling & recondensation
 – FRIGG loop: Boiling in heated rod bundles
• Summary & Outlook
Boiling Flow Applications

Steam Generators

Process Technology

Steam Condensers

Engine cooling water jackets

Fuel Assemblies
Why special modeling for wall boiling?

- For subcooled flows with superheated walls, standard thermal phase change models for bulk boiling/condensation will **underpredict** mass transfer rates.
- Accounts for steam bubble growth on nucleation sites and bubble departure.
- Mechanistic model for wall driven boiling.

Model outline:

- Mechanistic wall heat flux splitting → convective heat transfer, evaporation, quenching.
- Empirical submodels required for closure.
- Available for different BC’s: prescribed T_{wall} or q_{wall}, CHT walls.
- Activated per boundary patch with individual T_{wall} or q_{wall}.

© 2010 ANSYS, Inc. All rights reserved.
Flows with Subcooled Boiling (DNB) – RPI-Wall Boiling Model

Mechanistic wall heat partitioning model:

\[\dot{q}_{Wall} = \dot{q}_F + \dot{q}_Q + \dot{q}_E \]

- **Convective heat flux**
 \[\dot{q}_F = A_1 \cdot h_F \cdot (T_W - T_L) \]

- **Quenching heat flux**
 \[\dot{q}_Q = A_2 \cdot h_Q \cdot (T_W - T_L) \]

- **Evaporation heat flux**
 \[\dot{q}_E = \dot{m} \cdot (h_G - h_L) \]
Submodels for closure of RPI wall boiling model:

- **Nucleation site density**: Lemmert & Chawla, User Defined
- **Bubble departure diameter**:
 - Tolubinski & Kostanchuk, Unal, Fritz, User Defined
- **Bubble detachment frequency**:
 - Terminal rise velocity over Departure Diameter, User Defined
- **Bubble waiting time**:
 - Proportional to Detachment Period, User Defined
- **Quenching heat transfer**: Del Valle & Kenning, User Defined
- **Turbulent Wall Function for liquid convective heat transfer coefficient**

- **Correlation for bulk flow mean bubble diameter required**:
 - e.g. Kurul & Podowski correlation via CCL

- **Supported combination of wall boiling & CHT in the solid**
 - GGI & 1:1 solid-fluid interfaces
RPI Wall Boiling Model in the ANSYS CFX-Pre 12.0 GUI

Mass Transfer
Option: Phase Change

Phase Change Model
Option: Thermal Phase Change

Saturation Temperature

Wall Boiling Model
Option: RPI Model

Heat Transfer
Option: Two Resistance

Liquid Heat Transfer
Option: R-CM Model

Vapor Heat Transfer
Option: Zero Resistance

OK
- ANSYS Fluent 13.0:
 - Based on same RPI nucleate boiling & heat flux partitioning model
 - Non-equilibrium subcooled boiling
 - Supports superheated vapor (convective heat flux to vapor)

Contours of vapor volume fraction in a heated rod bundle
• Ongoing R&D and development:
 – Provide more user interfaces to the RPI boiling model
 – User defined area fractions A_1 and A_2
 – User defined terms for convective, quenching and evaporative heat fluxes Q_F, Q_Q, Q_E
 – User defined 4th component of wall heat partitioning, e.g. convective heat flux to vapor
 – CFX5Pre GUI extension
 – Extended output to CFD-Post
 – Coupling of RPI wall boiling & MUSIG

• All extensions are part of a collaborative R&D project with FZD → customized CFX solver
New Capabilities: CCL Access to Area Fractions

MASS TRANSFER:
Option = Phase Change

PHASE CHANGE MODEL:
Option = Thermal Phase Change

WALL BOILING MODEL:
Bubble Diameter Influence Factor = 2.0
Fixed Yplus for Liquid Subcooling = 250.0
Maximum Area Fraction of Bubble Influence = 1.0
Option = CRN Model

BUBBLE DEPARTURE DIAMETER:
Liquid Subcooling Scale = 45.0 [K]
Maximum Departure Diameter = 1.4E-3 [m]
Option = Tolubinski Kostanchuk
Reference Departure Diameter = 0.6E-3 [m]

END

BUBBLE DETACHMENT FREQUENCY:
Drag Coefficient = 1
Option = Terminal Velocity over Departure Diameter

END

BUBBLE WAITING TIME:
Option = Proportional to Detachment Period
Waiting Time Fraction = 0.8

END

LIQUID QUENCHING HEAT TRANSFER COEFFICIENT:
Option = Del Valle Kenning

END

PARTITIONING AREA FRACTIONS:
Convective Area = a1
Evaporative Area = a2
Option = User Defined
Quenching Area = a2

END

WALL NUCLEATION SITE DENSITY:
Option = Lemnert Chaula
Power Law Index = 1.805
Reference nucleation site density = 0.9922u*0.6*0.0 [m^-2]
Reference Wall Superheat = 10.0 [K]

END

END

© 2010 ANSYS, Inc. All rights reserved.
New capabilities:
CFX5Pre GUI Extension
Introduction of 4th component of the wall heat flux partitioning via CCL or User Fortran

Option = Fluid Dependent
END
END
FLUID PAIR: Gas | Liquid
INTERPHASE HEAT TRANSFER:
 Option = Two Resistance
PLUID1 INTERPHASE HEAT TRANSFER:
 Option = Tarn Resistance
END
PLUID2 INTERPHASE HEAT TRANSFER:
 Option = Ranz Marshall
END
END
INTERPHASE TRANSFER MODEL:
 Interfacial Area Density = AreaDensity
 Maximum Volume Fraction for Area Density = MaxAVforArea
 Minimum Volume Fraction for Area Density = MinAVforArea
 Option = Particle Model
END
MASS TRANSFER:
 Option = Phase Change
PHASE CHANGE MODEL:
 Option = Thermal Phase Change
WALL BOILING MODEL:
 Bubble Diameter Influence Factor = 2.0
 Fixed Vplugs for Liquid Subcooling = 250.0
 Maximum Area Fraction to Insert Influence = 1.0
 Option = RPF Model
 USERPARTTERM (Gas | Liquid.Bubble \ Departure Diameter,Gas | Liquid.Nucleation Site Density, Gas | \ Liquid.Temperature Superheating, Gas | Liquid.Temperature \ Subcooling, Gas,Density,Gas | Liquid.Bubble Detachment \ Frequency, Gas,HU)
END
BUBBLE DEPARTURE DIAMETER:
 Liquid Subcooling Scale = 45.0 [K]
 Maximum Departure Diameter = 1.4x-3 [m]
 Option = Tolubinski Kostanchuk
 Reference Departure Diameter = 0.6x-3 [m]
END
BUBBLE DETACHMENT FREQUENCY:
 Drag Coefficient = 1
 Option = Terminal Velocity over Departure Diameter
END
BUBBLE WAITING TIME:
 Option = Proportional to Detachment Period
 Waiting Time Fraction = 0.8
END
LIQUID QUENCHING HEAT TRANSFER COEFFICIENT:
 Option = Del Valle Keoning
END
PARTITIONING AREA FRACTIONS:
 Convective Area = a1
 Evaporative Area = 0.0
 Option = User Defined
 Quenching Area = a2
END
Customization of CFX5Pre for the extension of the RPI wall heat flux partitioning algorithm → 4th component of the wall heat flux splitting
Extended CFX5Post Output

Fluid pair variables
Coupling of RPI Wall Boiling Model with Homog./Inhomog. MUSIG

Future model extensions:
- Bubble departure diameter computed from equilibrium of forces
- Include further phenomena
CFX5Pre Customization: Inhomogeneous MUSIG & RPI

Standard RPI configuration, But for two phase pairs!
Investigated Boiling Testcases

- Bartolomei et al. (1967, 1982)
 - $G_n=900 \text{ kg/(s m}^2\text{)}$
 - $q=0.57 \text{ MW/m}^2$
 - $R=7.7 \text{ mm}$
 - $Z=2 \text{ m}$

- Bartolomei with recondensation (1980)

- Lee et al. (ICONE-16, 2008)

– Model Validation –

Testcase with Recondensation

(Bartolomei et al., 1980)
Availability of Testcases to ANSYS Customers

- ANSYS maintains a database of validation testcases (not only for multiphase flows)
- Bartolomei, Lee & FRIGGS testcases are available to ANSYS customers through ANSYS customer support
- Datasets of the testcases include:
 - Mesh hierarchy
 - CFD setup (baseline & parametric studies)
 - Basic post-processing and comparison to data
 - Documentation (report, paper or PPT)
• **Geometry**
 - Pipe flow; axial symmetry
 - Inner radius of pipe $R = 6.015\;\text{mm}$
 - Total pipe length $L_T = 1.4\;\text{m}$
 - Heated section length $L_H = 1.0\;\text{m}$

• **Flow parameters**
 - Upward directed water flow
 - Pressure @Inlet $p_{in} = 6.89\;\text{Mpa}$
 - Parameter Investigation
 - Mass flux @Inlet G_{in}
 - Liquid Temperature @Inlet T_{in}
 - Wall heat flux q_{wall}
Testcase Parameters

- Measurement data of zonal-averaged cross-sectional steam volume fraction distribution over pipe length are available for 3 different parameter setups:

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>q_{Wall} [MW m$^{-2}$]</th>
<th>G_{in} [kg m$^{-2}$ s$^{-1}$]</th>
<th>T_{in} [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.2</td>
<td>1500</td>
<td>495</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>1500</td>
<td>519</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>1000</td>
<td>503</td>
</tr>
</tbody>
</table>
Experiment No. 3 (Mesh01)

- Distribution of water temperature and steam volume fraction
Experiment No. 3 (Mesh02)

- Distribution of water temperature and steam volume fraction
Experiment No. 3 (Mesh03)

- Distribution of water temperature and steam volume fraction
Experiment No. 3 (Mesh04)

- Distribution of water temperature and steam volume fraction
Experiment No. 3

- Comparison of cross-sectional averaged steam volume fraction to experimental data
Interface Heat Transfer Models

- Investigation of the influence of different interface heat transfer models for liquid phase
 - Ranz-Marshall (Baseline Setup)
 \[Nu = 2 + 0.6 \, Re^{0.5} \, Pr^{0.3} \]
 - Hughmark
 \[Nu = 2 + 0.6 \, Re^{0.5} \, Pr^{0.3} \quad 0 \leq Re \leq 776.06 \]
 \[Nu = 2 + 0.27 \, Re^{0.5} \, Pr^{0.3} \quad 776.06 \leq Re \]
 - Tomiyama
 \[Nu = 2 + 0.15 \, Re^{0.8} \, Pr^{0.5} \]
FRIGG-6a Test Case
FRIGG-6a Test Case
Description

- Geometry (FT-6a)
 - Six electrically heated rods placed in a vertical adiabatic pipe

- Flow Parameters
 - Upward directed subcooled water flow
 - Mass flux @Inlet $G_{in} = 1163 \text{ kg m}^{-2} \text{ s}^{-1}$
 - Pressure @Inlet $p_{in} = 5 \text{ MPa}$
 - Rod wall heat flux $q_{Rod} = 0.522 \text{ MW m}^{-2}$
 - Liquid subcooling @Inlet $T_{sub} = 4.5 \text{ K}$
FRIGG-6a Test Case
Experimental Data

• Determination of experimental data by gamma ray attenuation method:
 – Measurements of area averaged gas volume fraction in different cross-sectional zones along the test section

Definition of Zones:
• Zone1 (r < 14.6 mm)
• Zone2 (14.6 mm < r < 28.6 mm)
• Zone3 (r > 28.6 mm)
FRIGG-6a Test Case
Mesh Refinement Hierarchy

<table>
<thead>
<tr>
<th></th>
<th>Mesh01</th>
<th>Mesh02</th>
<th>Mesh03</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Elements</td>
<td>699 x 150</td>
<td>2796 x 300</td>
<td>11184 x 600</td>
</tr>
<tr>
<td></td>
<td>(104 850)</td>
<td>(838 800)</td>
<td>(6 710 800)</td>
</tr>
<tr>
<td>No. Nodes</td>
<td>116 421</td>
<td>884 639</td>
<td>6 892 869</td>
</tr>
<tr>
<td>Max y⁺</td>
<td>180</td>
<td>94</td>
<td>51</td>
</tr>
<tr>
<td>Min Angle [deg]</td>
<td>51.9</td>
<td>50.4</td>
<td>49.64</td>
</tr>
<tr>
<td>Min Determinant</td>
<td>0.84</td>
<td>0.91</td>
<td>0.98</td>
</tr>
<tr>
<td>Numerical Effort</td>
<td>~ 90 minutes @ 6 CPU’s</td>
<td>~ 17 hours @ 16 CPU’s</td>
<td>~ 6 days @ 40 CPU’s</td>
</tr>
</tbody>
</table>
FRIGG-6a Test Case
Baseline Setup: SST

Plot of gas volume fraction (Mesh03, SST)

Two cross-sectional distributions of gas volume fraction (Mesh03,SST)
FRIGG-6a Test Case
Baseline Setup: SST

Plot of liquid temperature (Mesh03,SST)

Two cross-sectional distributions of liquid temperature (Mesh03,SST)
Turbulence Modeling in Rod Bundles

- So far good comparison, but…
 - Wall friction in rod bundles leads to secondary flows
 - Anisotropic turbulence
 - SST \Rightarrow BSL RSM
 - Does not influence so much cross-sectional averaged flow properties
 - Secondary flows affect steam & temperature distributions on wall surfaces
 \Rightarrow Can be relevant for safety!
FRIGG-6a Test Case
Turbulence Model Comparison

SST model

BSL RSM model

Plot of gas volume fraction
FRIGG-6a Test Case
Turbulence Model Comparison

- SST model → NO secondary flows

Plot of gas volume fraction (Outlet)
Contour plot of gas volume fraction (Outlet)
FRIGG-6a Test Case
Turbulence Model Comparison

- BSL RSM model \rightarrow secondary flows

![Plot of gas volume fraction (Outlet)](image1)

![Contour plot of gas volume fraction (Outlet)](image2)
DEBORA Testcase - RPI & MUSIG -
DEBORA Testcase: RPI & MUSIG

dashed lines – $d_B = f(T_{sat} - T_L)$; solid lines – d_B as mean Sauter diam. from MUSIG group

• Inhomog. MUSIG
• Phase change
• Breakup & Coalescence
• RPI

By courtesy of E. Krepper, FZD
R&D Initiative:
“Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR”
• Ultrafast electron beam X-ray CT (ROFEX) of heated rod bundle in titanium pipe on TOPFLOW @ FZD:

Images by courtesy of U. Hampel, F. Fischer, FZD
Summary & Outlook

• Overview on ANSYS CFD boiling model development and validation
• Continuous effort in model improvement, R&D
• Emphasis in validation on BPG, comparison to data, geometry & grid independent modeling
• Complex MPF phenomena
 → number of uncertainties remaining & requiring further investigations → detailed experiments

• Outlook:
 – Ongoing & customer driven CFD model development
 – Research cooperation with Industry & Academia
 – Extension of the wall heat partitioning in wall boiling model
 – Increase range of model applicability
Acknowledgement

This research has been supported by the
German Ministry of Education & Research (BMBF)
under the contract number 02NUK010G in the project:
“Modeling, Simulation and Experiments for
Boiling Processes in Fuel Assemblies of
Pressurized Water Reactors (PWR)”
in the framework of the German CFD Network on Nuclear
Reactor Safety Research and Alliance for Competence in
Nuclear Technology, Germany and the BMBF funding
framework for basic research Energy-2020+.
Thank You!