

25

Development and Validation of Eulerian Multiphase Flow Models in ANSYS CFD

> Thomas Frank ANSYS Germany Thomas.Frank@ansys.com

Outline

- Introduction
- MPF model validation for adiabatic air-water flows
- Polydisperse MPF model validation – MUSIG model
- Validation of the RPI wall boiling model
- The FRIGG testcase for boiling flow in rod bundles
- RPI & MUSIG model
- Summary & Outlook

ANSYS as Part of the German CFD Network in Nuclear Reactor Safety

ANSYS[®]

Methodology of CFD Model Development & Validation

Eulerian MPF Modeling - The Particle Model

Mass weighted averaged conservation equations

Mass, momentum, energy transport equations for each phase

$$\frac{\partial}{\partial t} (\rho_k r_k) + \nabla (\rho_k r_k \mathbf{U}_k) = \sum_{\substack{l=1\\l\neq k}}^{N} \Gamma_{kl}$$
$$\frac{\partial}{\partial t} (\rho_k r_k \mathbf{U}_k) + \nabla \cdot (\rho_k r_k \mathbf{U}_k \mathbf{U}_k) = -r_k \nabla P - \nabla \cdot (r_k \Pi^k) + \mathbf{F}_k + \mathbf{I}_k$$
$$\mathbf{I}_k = \underbrace{\mathbf{F}_{\Gamma}}_{\text{secondary}} + \underbrace{\mathbf{F}_{D}}_{\text{drag}} + \underbrace{\mathbf{F}_{L}}_{\text{lift}} + \underbrace{\mathbf{F}_{WL}}_{\text{wall}} + \underbrace{\mathbf{F}_{TD}}_{\text{turbulent}} + \underbrace{\mathbf{F}_{VM}}_{\text{virtual mass}}$$

lubrication

dispersion

- turbulence models for each phase (e.g. k-ε / k-ω SST model, 0-eq. disp. phase turb. model, Sato model)
- heat transfer equations for each phase with interfacial transfer closure
- interfacial forces need empirical closure

mom. transfer

• high void fraction effects, bubble induced turbulence, etc.

Lift force, Wall lubrication force & turbulent dispersion

Lift force:

- due to asymmetric wake and deformed asymmetric particle shape
- \rightarrow Tomiyama C_L correlation

$$\mathbf{F}_{L} = \mathbf{C}_{L} r_{G} \rho_{L} (\mathbf{U}_{L} - \mathbf{U}_{G}) \times \nabla \times \mathbf{U}_{L}$$

$$C_L = C_L(\operatorname{Re}_P, \operatorname{Re}_\nabla, Eo)$$

ANSY

Wall lubrication force:

- surface tension prevents bubbles from approaching solid walls
- → Antal, Tomiyama & Frank W.L.F. models

$$\mathbf{F}_{WL} = -\mathbf{C}_{wall} r_G \rho_L \left| \mathbf{U}_{rel} - (\mathbf{U}_{rel} \cdot \mathbf{n}_W) \mathbf{n}_W \right|^2 \mathbf{n}_W$$

$$C_{wall} = C_W (\text{Eo}, \text{y/d}_P)$$

Turbulent dispersion force:

turbulent dispersion = action of turb. eddies via interphase drag

$$\mathbf{F}_{TD} = \frac{3}{4} \rho_F \frac{\overline{C_D}}{d_P} \frac{v_{tF}}{\sigma_{rF}} | U_F - U_P | \overline{r_P} \left(\frac{\nabla \overline{r_P}}{\overline{r_P}} - \frac{\nabla \overline{r_F}}{\overline{r_F}} \right)$$

FAD model by Burns et al. (ICMF'04)

Bubbly Flow Model Validation FZR MT-Loop and TOPFLOW Database

CFX Model Validation MT-Loop & TOPFLOW Test Matrix

- M01 experimental test series on MT-Loop
- evaluation based on air volume fraction profiles at L/D=59,2 (z=3.03m) from the sparger system
- numerically investigated test case conditions

Validation: Bubbly Flows Turbulent Dispersion Force

Monodispersed Bubbly Flow MT-Loop Test Case FZR-019

ANSYS

Monodispersed Bubbly Flow MT-Loop Test Case FZR-052

ANSYS

TOPFLOW Test Facility @ FZD

© 2010 ANSYS, Inc. All rights reserved.

TOPFLOW-074 Test Case Conditions from Test Matrix

- TOPFLOW-074 test case was subject of validation in the past
- Superficial velocities:

Wire-mesh sensor measurements at locations:

z=±10, 15, 20, 40, 80, 160, 250, 520mm

3d Bubbly Flow Around Obstacle Water Velocity Comparison

- Comparison
 CFD ⇔ Experiment
- Absolute water velocity distribution in symmetry plane
- Import of exp. data into CFX-Post
- Pre-interpolation of exp. data to ∆z=0.01m

ANSYS[®]

3d Bubbly Flow Around Obstacle Air Void Fraction Comparison

ANSYS[®]

- Comparison
 CFD ⇔ Experiment
- Air void fraction distribution in symmetry plane

3d Bubbly Flow Around Obstacle Air Void Fraction Comparison

3d Bubbly Flow Around Obstacle Cross-Sectional Air Void Fraction

z=520mm

- Quantitative data comparison @ cross sections
 z=±10, ±15, ±20, ±40, ±80, ±160, ±250, ±520mm:
 - absolute water velocity
 - air volume fraction

z=20mm y=0mm

z=80mm y=0mm

Polydispersed Bubbly Flow Caused by Breakup & Coalescence

Transition from disperse bubbly flow to slug flow:

Balance between:

- coalescence of bubbles
- turbulent bubble breakup
- >bubble size distribution; polydisperse bubbly flow
- → counter-current radial motion of small and large bubbles; more than one velocity field

→ new population balance model (inhomogeneous MUSIG)

Inhomogeneous MUSIG Model

- momentum equations are solved for N gas phases (vel. groups)
- size fraction equations for M_i bubble size classes in each vel. group
- bubble coalescence and break-up over all ΣM_i MUSIG groups

Validation of 3x7 Inhomogeneous MUSIG Model on TOPFLOW-074

TOPFLOW Test Facility @ FZD

Courtesy of FZD

Condensation Test Case

- P=2 [MPa]
- J_w=1.0 [m/s]
- J_s=0.54 [m/s]
- T_s=214.4 [°C]
- T_w=210.5 [°C] → ∆T_w=3.9 [K]
- D_{inj} = 1 [mm]
- Detailed experimental data:
 - Bubble size distribution

Radial steam volume fraction distribution

Dirk Lucas, Horst-Michael Prasser: "Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow",

Nuclear Engineering and Design, Volume 237, Issue 5, March 2007, Pages 497-508

Physical Model Setup

- Standard MUSIG & Extended MUSIG
 - 25 bubble size classes
 - 3 velocity groups:
 0→3 [mm],3→6 [mm], 6→30 [mm]
 - Arranged in accordance with critical Tomiyama bubble diameter for bubble size dependent lift force
 - Break up model: Luo & Svendsen (F_B=0.025)
 - Coalescence model: Prince & Blanch (F_c=0.05)

TOPFLOW Condensation Testcase

	Inlet BC	Inlet Position	WLF	TD Force	Heat Transfer
Config 1	D _{inj} = 4mm	Source point @ Wall	-	CTD=1.0	Nu=2+0.6Re _p ^{0.5} Pr ^{0.3}
Config 2	D _{inj} = 4 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}
Config 3	D _{inj} = 1 mm	Source point @ 75 mm	F_{WLF}	CTD=1.5	Nu=2+0.15Re _p ^{0.8} Pr ^{0.5}

Results: Vapor Volume Fraction

ANSYS[®]

Results: Vertical Averaged Steam Distribution

Results: Radial Steam Distribution **ANSYS**

© 2010 ANSYS, Inc. All rights reserved.

34

Results: Radial Steam Distribution **ANSYS**

© 2010 ANSYS, Inc. All rights reserved.

35

Results: Bubble Size Distribution

© 2010 ANSYS, Inc. All rights reserved.

Results: Bubble Size Distribution

© 2010 ANSYS, Inc. All rights reserved.

CFD Simulation for Fuel Assemblies in Nuclear Reactors

ANSYS[®]

CFD Simulation for Fuel Assemblies in Nuclear Reactors

ANSYS[®]

Multiphase Flow Regimes for Boiling Water Flow

Flows with Subcooled Boiling (DNB) – RPI-Wall Boiling Model

Mechanistic wall heat partioning model:

RPI-Wall Boiling Model – Submodels for Model Closure

Submodels for closure of RPI wall boiling model:

- Nucleation site density: Lemmert & Chawla , User Defined
- Bubble departure diameter:
 - Tolubinski & Kostanchuk, Unal, Fritz, User Defined
- Bubble detachment frequency:
 - Terminal rise velocity over Departure Diameter, User Defined
- Bubble waiting time:
 - Proportional to Detachment Period, User Defined
- Quenching heat transfer: Del Valle & Kenning, User Defined
- Turbulent Wall Function for liquid convective heat transfer coefficient
- Correlation for bulk flow mean bubble diameter required:
 → e.g. Kurul & Podowski correlation via CCL
- Supported combination of wall boiling & CHT in the solid
 - GGI & 1:1 solid-fluid interfaces

RPI Wall Boiling Model in the ANSYS CFX-Pre 12.0 GUI

Basic Settings	Fluid Models	Fluid Specific Models	Fluid Pair Models	Initialisation	
-Mass Transf	er	_			
Option	Phas	e Change		-	
Phase Cha	nge Model				
Option	The	ermal Phase Change		-	
Satur	ation Temperatur	e			
Saturation	n Temp.	aturTemper)
🕡 Wall E	Boiling Model 🚽				
Option	RI	PI Model		•	
Fixe	d Yplus for Liquid	Subcooling			
- Mas	s Source Under R	elaxation		ŧ	
E Bub	Bubble Departure Diameter				
U U Wal	Wall Nucleation Site Density				
	Bubble Detachment Frequency				
	Bubble Waiting Time				
E Liqu	Liquid Quenching Heat Transfer Coefficient				
	Bubble Diam. Influence Factor				
_ Мах	. Area Frac. of B	ubble Influence		ŧ	
Heat Transfe	er				
Option	Two	Resistance			
-Liquid Heal	t Transfer	Rosistance			
Option		17 Marshall		_	
VapourHeat Transfer					
Option	Zer	o Resistance		•	

Option	RPI Model	-	
- 🔽 Fixed Yplus for Liqu	id Subcooling		_
Fixed Yplus	250.0		
- 🔽 Mass Source Under	Relaxation		
Mass Source Under Rel	0.1		
- 🔽 Bubble Departure D	iameter		_
Option	Tolubinski Kostanchuk	•	
Ref. Departure Diam.	0.6E-3 [m]		
Max. Departure Diam.	1.4E-3 [m]		
Liquid Subcooling Scale	45.0 [K]		
- 🔽 Wall Nucleation Site	Density		_
Option	Lemmert Chawla	•	
Site Density	7.9384e5 [m^-2]		
Ref. Wall Superheat 10.0 [K]			
Power Law Index	1.805		
- 🔽 Bubble Det achment	Frequency		
Option	Terminal Velocity over Departure Diameter	•	
Drag Coefficient	1.0		
- 🔽 Bubble Waiting Time	÷		
Option	Proportional to Detachment Period	-	
Waiting Time Fraction	0.8		
- 🔽 Liquid Quenching H	eat Transfer Coefficient		
Option	Del Valle Kenning	▼	
- 🔽 Bubble Diam. Influe	nce Factor		
Factor	2.0		
🔽 Max. Area Frac. of	Bubble Influence		
Max. Area Fraction	0.5		

NSVS

© 2010 ANSYS, Inc. All rights reserved.

43

Investigated Boiling Testcases

Bartolomei with recondensation

• Lee et al. (ICONE-16, 2008)

• OECD NEA PSBT subchannel benchmark (1987-1995, 2009)

FRIGG-6a Test Case Description

- Geometry (FT-6a)
 - Six electrically heated rods placed in a vertical adiabatic pipe
- Flow Parameters
 - Upward directed subcooled water flow
 - Mass flux @Inlet
 G_{in} = 1163 kg m⁻² s⁻¹
 - Pressure @Inlet p_{in} = 5 MPa

- Rod wall heat flux
 q_{Rod} = 0.522 MW m⁻²
- Liquid subcooling @Inlet
 T_{sub}= 4.5 K

FRIGG-6a Test Case Experimental Data

- Determination of experimental data by gamma ray attenuation method:
 - Measurements of area averaged gas volume fraction in different cross-sectional zones along the test section

Defintion of Zones:

- Zone1 (r < 14.6 mm)
- Zone2 (14.6 mm < r < 28.6 mm)
- Zone3 (r > 28.6 mm)

FRIGG-6a Test Case Mesh Refinement Hierarchy

	Mesh01	Mesh02	Mesh03	
No. Elements	699 x 1502796 x 300(104 850)(838 800)		11184 x 600 (6 710 800)	
No. Nodes	116 421	884 639	6 892 869	
Max y⁺	180	94	51	
Min Angle [deg]	51.9	50.4	49.64	
Min Determinant	0.84	0.91	0.98	
Numerical Effort	~ 90 minutes @ 6 CPU's	~ 17 hours @ 16 CPU's	~ 6 days @ 40 CPU's	

FRIGG-6a Test Case Baseline Setup: SST → Steam VF

Plot of steam volume fraction (Mesh03, SST)

Two cross-sectional distributions of steam volume fraction (Mesh03,SST)

Gas.Volume Fraction

7.000e-01

5.250e-01

3.500e-01

1.750e-01

0.000e+00

ANSYS[®]

FRIGG-6a Test Case Baseline Setup: SST \rightarrow T_L

Two cross-sectional distributions of liquid temperature (Mesh03,SST)

FRIGG-6a Test Case Mesh Comparison

Turbulence Modeling in Rod Bundles

- So far good comparison, but...
 - Wall friction in rod bundles leads to secondary flows
 - Anisotropic turbulence
 - SST \Rightarrow BSL RSM
 - Does not influence so much cross-sectional averaged flow properties
 - Secondary flows affect steam & temperature distributions on heated wall surfaces

 \rightarrow Can be relevant for safety!

SST model

Steam volume fraction

ANSYS[®]

• SST model \rightarrow NO secondary flows

ANSYS[®]

• BSL RSM model \rightarrow secondary flows

Liquid velocity in cross section (Outlet)

Contour plot of steam volume fraction (Outlet)

New R&D Consortium

Coupling of RPI Wall Boiling Model with Homog./Inhomg. MUSIG

ANSYS[®]

DEBORA Testcase: RPI & MUSIG

ANSYS[®]

dashed lines $-d_B = f(T_{sat}-T_L)$; solid lines $-d_B$ as mean Sauter diam. from MUSIG group

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

 Ultrafast electron beam X-ray CT of fuel rod bundle in titanium pipe on TOPFLOW @ FZD:

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

Wall boiling simulation in 3x3 rod bundle with spacer grid:

Wall superheat T_W-T_{Sat}

ANSYS[®]

Summary & Outlook

- Overview on ANSYS CFD multiphase flow model development and validation
- Continuous effort in model improvement, R&D
- Emphasis in validation on BPG, comparison to data, geometry & grid independent modeling
- High interoperability of physical models
- Outlook:
 - Ongoing & customer driven CFD model development
 - Research cooperation with Industry & Academia
 - More & more complex MPF phenomena
 - Coupling of wall boiling model to inhomogeneous MUSIG
 - Extension of the wall heat partitioning in wall boiling model

