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Outline

• Motivation

• The wall boiling model 
in ANSYS CFD

• Boiling model validation 

– Wall boiling in vertical pipes
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– Wall boiling in vertical pipes

– Boiling & recondensation

– Boiling & CHT

– FRIGG loop: Boiling in 

heated rod bundles

• Summary & Outlook



Introduction – Towards CFD for Flows 

through Nuclear Fuel Assemblies 

• Prediction of boiling flow through fuel assemblies

• Optimization of fuel assembly and spacer grid design

• Replacement/supplementation of very expensive experiments 
by knowledge obtained from CFD simulations
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CFD Simulation for Fuel 

Assemblies in Nuclear Reactors

Material PropertiesMaterial Properties
Wall Boiling Wall Boiling & & 
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TurbulenceTurbulence
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Multiphase Flow Regimes for 

Boiling Water Flow

subcooled 

flow

bubbly 

flow slug flow
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flow

spray 

flow
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Flows with Subcooled Boiling (DNB) –

RPI-Wall Boiling Model

EQFWall qqqq &&&& ++=

convective heat flux

1 ( )F F W Lq A h T T= ⋅ ⋅ −&
evaporation heat flux

E G Lq m (h h )= ⋅ −& &
quenching heat flux

2 ( )
Q Q W L

q A h T T= ⋅ ⋅ −&

Mechanistic wall heat partioning model:
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• Quenching heat flux

Grid Dependent Correlations

2 ( )
Q Q LW

q A h T T= ⋅ ⋅ −&

y

TL 1-D approach

π

λρ LPLLW
Q

Ct
fh 2=
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1-D
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TL   first grid node 

with refining 

grid   

π
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Grid Dependent Correlations

• Evaporation heat flux

3
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dW – bubble departure diameter

n – nucleation site density per m²

f – bubble departure frequency

E G Lq m (h h )= ⋅ −& &
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tends to film boiling on fine grids (due to TL � TW)

• small quenching & overestimated evaporation on fine grids

• wrong heat flux partitioning



Revisited RPI Boiling Model

( ) ( 1/ )Pr 2.12 ln( )T y e y eβ+ + −Γ + − Γ = ⋅ + ⋅ + ⋅ 

• Grid invariance of the model required
• determine TL from temperature wall function

(Kader, 1981)
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• from definition of T+:

PL τ

W L

W

ρ c u
T (T T )

q

+ ⋅ ⋅
= −

&

L
y u

y τρ

µ
+ ⋅∆ ⋅

=

���� evaluating T+ at 2 different locations/wall distances y+



Revisited RPI Boiling Model

PL τ

W LW, y first cell y first cell

y first cell

ρ c u
q (T T )

T
+ +

+

+= =

=

⋅ ⋅
= −&

heat fluxes are equal
PL τ

W LW, y const y const

ρ c u
q (T T )

T
+ ++= =

⋅ ⋅
= −&

• heat flux in boundary layer identical at both locations
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• additional factor in correlations for   

• assumption of y+
const=250; model parameter

• Replace (TW-TL) in submodel expressions with the above relation 
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RPI-Wall Boiling Model –

Submodels for Model Closure

Submodels for closure of RPI wall boiling model:

– Nucleation site density: Lemmert & Chawla , User Defined

– Bubble departure diameter:
Tolubinski & Kostanchuk, Unal, Fritz, User Defined

– Bubble detachment frequency:
Terminal rise velocity over Departure Diameter, User Defined

– Bubble waiting time:
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– Bubble waiting time:
Proportional to Detachment Period, User Defined

– Quenching heat transfer: Del Valle & Kenning, User Defined

– Turbulent Wall Function for liquid convective heat transfer coefficient

• Correlation for bulk flow mean bubble diameter required:
� e.g. Kurul & Podowski correlation via CCL

• Supported combination of wall boiling & CHT in the solid

– GGI & 1:1 solid-fluid interfaces



RPI Wall Boiling Model in the 

ANSYS CFX-Pre 12.0 GUI 
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ANSYS Fluent 13.0

Wall Boiling Modeling

• Wall boiling

– Based on same RPI 

nucleate boiling & heat 

flux partitioning model

– Non-equilibrium 
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– Non-equilibrium 

subcooled boiling

– Will support super-

heated vapor

(convective heat flux

to vapor)

Contours of vapor volume fraction 
in a heated rod bundle 



ANSYS CFX R&D 

Development Work in Progress

• Ongoing R&D and development:

– Provide more user interfaces to the RPI boiling model

– User defined area fractions A1 and A2

– User defined terms for convective, quenching and 

evaporative heat fluxes QF, QQ, QE
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evaporative heat fluxes QF, QQ, QE

– User defined 4th component of wall heat partitioning, 
e.g. heat flux to vapor

– CFX5Pre GUI extension

– Extended output to CFD-Post

• All extensions are part of a collaborative R&D 
project with FZD ���� customized CFX solver



New Capabilities: CCL Access to 

Area Fractions

• WALL BOILING MODEL

• PARTITIONING AREA 
FRACTIONS

• Option = Standard / 
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User Defined

• Under User Defined 
convective, quenching
and evaporative area 
can be introduced



New capabilities: 

CFX5Pre GUI Extension
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New capabilities: 

CFX5Pre GUI Extension
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CCL & User Routine for 4th Wall 

Heat Partitioning Component
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CCL & User Routine for 4th Wall 

Heat Partitioning Component

• Customization of 
CFX5Pre for the 
extension of the RPI 
wall heat flux 

© 2009 ANSYS, Inc.  All rights reserved. 19 ANSYS, Inc. Proprietary

wall heat flux 
partitioning algorithm 
with a 4th component 
of the wall heat flux 
splitting



Extended CFX5Post Output

Fluid pair 
variables
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variables



The Bartolomej et al. 
Testcase (1967,1982)
The Bartolomej et al. 
Testcase (1967,1982)
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The Bartolomej Test Case

Variable Value

P 4.5MPa

R 7.7 mm

R = 7.7 mm

q
=

0
.5

7
M

W
/m

2
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R 7.7 mm

Gin 900 kg/(s m2)

0.57MW/m2 

Subcooling 58.2 K

q&

Z
=

 2
 m

q
=

0
.5

7
M

W
/m

Gin=900 kg/(s m2)



Multiphase Flow Model

• Steam-Water 2-phase flow:
– Water: continuous phase

– Water Steam: disperse bubbles (particle model)

• Material properties (EOS):
– IAPWS-IF97 water - water steam property tables
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– IAPWS-IF97 water - water steam property tables

• Modified law for interfacial area
– Kurul & Podowski type bulk bubble diameter: dB=f(Tsub)

– Accounting for higher volume fraction of the steam phase

• Turbulence Model
– SST turbulence model for continuous phase

– 0-eq. disperse phase turb. model + Sato bubble induced turbulence



Inter-Phase Mass, Momentum and 

Energy Transfer

• Mass transfer model
– Thermal Phase Change Model (bulk boiling/condensation model)

– RPI wall boiling model

• Momentum transfer models
– Grace drag
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– Grace drag

– FAD turbulent dispersion force

– Tomiyama lift force

– Wall lubrication force (none, Antal, Frank, Tomiyama)

• Heat transfer models
– Water: Thermal Energy

– Water Steam: Saturation temperature

– Two resistance model

– Ranz Marshall correlation for bubble heat transfer



Numerical Grids

Grid Grid1 Grid2 Grid3

• Validation on mesh hierarchy with regular 
refinement factor of 4 (2d meshes)
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# Nodes

(uniform)
20x150 40x300 80x600

Max y+ 264 133 69

∆t [s] 10-2 10-3 5x10-4



Grid1
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Grid 2
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Grid 3
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Comparison to Experimental Data
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Comparison to Experimental Data

- Parameter & Model Variation

Influence of wall heat flux: Influence of wall lubrication force model:
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The Bartolomej et al. 
Testcase with 

Recondensation
(Bartolomeij et al. (1980))

The Bartolomej et al. 
Testcase with 

Recondensation
(Bartolomeij et al. (1980))
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Geometry & Flow Parameters

• Geometry

– Pipe flow; axial symmetry

– Inner radius of pipe R = 6.015 mm

– Total pipe length LT= 1.4 m

– Heated section length LH= 1.0 m

Outlet

R

Adiabatic Wall

Symmetry Axis
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• Flow parameters

– Upward directed water flow

– Pressure @Inlet pin = 6.89 Mpa

– Parameter Investigation

• Mass flux @Inlet Gin

• Liquid Temperature @Inlet Tin

• Wall heat flux qwall

LHLT

Inlet

qwall

Gin,Tin, pin

Heated Wall

Symmetry Axis



Testcase Parameters

• Measurement data of zonal-averaged cross-sectional 
steam volume fraction distribution over pipe length 
are available for 3 different parameter setups:

Experiment
No.

qWall [MW m^-2] Gin [kg m^-2 s^-1] Tin [K]
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No.
qWall [MW m^-2] Gin [kg m^-2 s^-1] Tin [K]

2 1.2 1500 495

3 0.8 1500 519

5 0.8 1000 503



Experiment No. 3 (Mesh01)

• Distribution of water temperature and steam volume 
fraction
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Experiment No. 3 (Mesh02)

• Distribution of water temperature and steam volume 
fraction
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Experiment No. 3 (Mesh03)

• Distribution of water temperature and steam volume 
fraction
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Experiment No. 3 (Mesh04)

• Distribution of water temperature and steam volume 
fraction
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Experiment No. 3 

• Comparison of cross-sectional averaged steam 
volume fraction to experimental data
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Interface Heat Transfer Models

• Investigation of the influence of different interface 
heat transfer models for liquid phase

– Ranz-Marshall (Baseline Setup)

– Hughmark

0.30.5PrRe 0.62Nu +=
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– Hughmark

– Tomiyama

Re776.06    PrRe 0.272Nu

776.06Re0    PrRe 0.62Nu
0.30.5

0.30.5

≤+=

≤≤+=

0.50.8PrRe Nu 15.02 +=



Interphase Heat Transfer Model
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The Lee et al. Testcase 
(ICONE-16, 2008)

The Lee et al. Testcase 
(ICONE-16, 2008)
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Lee et al. (2008) Experiment

• Axially symmetric circular annulus

• Radial dimensions
– Inner radius of outer tube: R = 18.75 mm

– Outer radius of inner tube: R0 = 9.5 mm

– Core radius: RC = 3/4 R0

– Annulus width: 9.25 mm

Outlet
RC

R
R0

Measuring
Plane
(for experimental

and numerical

Results)

r
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• Axial dimensions
– Total heating section height: LT = 1670 mm

– Distance between inlet and measuring plane: 

LM = 1610 mm

• Radial Position: RP

– Dimensionless, radial distance from inner tube 

(RP = 0) to outer tube (RP = 1) across the 

annulus:

Inlet

( )
( )0

0

RR

Rr
RP

−

−
=

LM LT

Adiabatic Wall

Heated Wall

Outer Tube

Annulus

Inner Tube
(Heating Rod)

z

Axis



Investigated Geometry 

Configurations

HFO (Heat Flux Only): Fluid Domain (Annulus)

→ area specific heat flux boundary condition #

Fluid Domain

Outlet
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CHT (Conjugated Heat Transfer): Fluid Domain (Annulus)
+ Solid Domain (Heated Rod Core)

+ Solid Domain (Non-Heated Rod Cladding)

→ volume specific heat source #

Fluid Domain

Inlet

Outlet

Solid

Domain
Solid Domain #

Inlet



Selected Testcase Conditions

• Selected two (out of 12) datasets:

Set 25
(least of all steam)

Set 16
(most of all steam)
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• Parameter comparison

(least of all steam) (most of all steam)

Set No.* q’’ [kW m^-2] G [kg m^-2s] Tin [°C] Pin [kPa]

16 320.4 718.8 83.8 121.1

25 220.0 1057.2 90.1 134.4



Model Parameter Modifications in 

Comparison to PWR Conditions

Found that submodels need modifications for BWR 
conditions (see also Tu&Yeoh, Anglart et al., Krepper, Koncar):

1. Bulk bubble diameter
Kurul & Podowski ���� dB,max~1.5mm @ wall
modified d law ���� d ~4.0mm @ wall
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modified dB law ���� dB,max~4.0mm @ wall

2. Bubble departure diameter
Tolubinski & Kostanchuk ���� dW ~0.5mm max.
const. bubble dept. diam. ���� dW =1mm - 3mm

3. A2 - Wall area fraction influenced by steam bubbles

default ���� 0.5
increased up to 1.0



Modification for Bulk Bubble 

Diameter Correlation

• Modified Kurul & Podowski (1991) law:
( ) ( )1 ,2 2 ,1

,1 ,2

B sub sub B sub sub

B

sub sub

d T T d T T
d

T T

− + −
=

−
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Set25: Variation of Bubble 

Departure Diameter

• Tolubinski & Kostanchuk (1970) vs. const. bubble 
departure diameter dW=1,…,3mm

• Measurement cross section @ z = 1610 [mm]
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Set25: Grid Independence 

• Steam volume fraction on mesh1 - mesh4
• Measurement cross section @ z = 1610 [mm]
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The Lee et al. Testcase 
(ICONE-16, 2008) :

Conjugate Heat Transfer

The Lee et al. Testcase 
(ICONE-16, 2008) :

Conjugate Heat Transfer

© 2009 ANSYS, Inc.  All rights reserved. 49 ANSYS, Inc. Proprietary© 2009 ANSYS, Inc.  All rights reserved. 49 ANSYS, Inc. Proprietary



The RPI Wall Boiling Model:

Lee et al. Testcase with CHT

• Specific energy 
source in solid 
material, Set25
(equiv. to qWall):

ECore=8.23⋅⋅⋅⋅107 [W/m3]
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ECore=8.23⋅⋅⋅⋅10 [W/m ]

• Temperature 
and Steam VF 
distribution in 
vertical plane



The RPI Wall Boiling Model:

Lee et al. Testcase with CHT

Set25 & CHT: Grid independence for temperature 
distribution @ z=1610[mm]; 1÷÷÷÷1 mesh interface
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Heated Core Fluid Domain

Unheated 

“Cladding”



The RPI Wall Boiling Model:

Lee et al. Testcase with CHT

Set25 & CHT: Vapour VF distribution @ z=1610[mm]

1÷÷÷÷1 mesh interface
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The RPI Wall Boiling Model:

Lee et al. Testcase with CHT

• Comparison of temperature distributions for 
conforming vs. non-conforming mesh, 1÷÷÷÷1 vs. GGI

© 2009 ANSYS, Inc.  All rights reserved. 53 ANSYS, Inc. Proprietary



FRIGG-6a Test Case
(Anglart & Nylund, 
1967, 1996 & 1997)

FRIGG-6a Test Case
(Anglart & Nylund, 
1967, 1996 & 1997)
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FRIGG-6a Test Case

Description

• Geometry (FT-6a)

– Six electrically heated 

rods placed in a vertical 
adiabatic pipe

Adiabatic 
Wall

LH=4.2 m
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• Flow Parameters

– Upward directed 
subcooled water flow

– Mass flux @Inlet            

Gin = 1163 kg m-2 s-1

– Pressure @Inlet              
pin = 5 MPa

Heated 

Rod

– Rod wall heat flux         
qRod = 0.522 MW m-2

– Liquid subcooling @Inlet 
Tsub= 4.5 K



FRIGG-6a Test Case 

Experimental Data

• Determination of 
experimental data by 
gamma ray attenuation 
method:

– Measurements of area 

Zone1

Zone2

Zone3
r
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averaged gas volume 
fraction in different 
cross-sectional zones 
along the test section

Defintion of Zones:

• Zone1 (r < 14.6 mm)

• Zone2 (14.6 mm < r < 28.6 mm)

• Zone3 (r > 28.6 mm)



FRIGG-6a Test Case

Mesh Refinement Hierarchy

Mesh01 Mesh02 Mesh03

No. Elements
699 x 150

(104 850)

2796 x 300

(838 800)

11184 x 600

(6 710 800)

No. Nodes 116 421 884 639 6 892 869
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Max y+ 180 94 51

Min Angle  

[deg]
51.9 50.4 49.64

Min 

Determinant
0.84 0.91 0.98

Numerical 
Effort

~ 90 minutes

@ 6 CPU’s

~ 17 hours

@ 16 CPU’s

~ 6 days

@ 40 CPU’s



FRIGG-6a Test Case

Baseline Setup: SST
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Outlet Outlet

Two cross-sectional distributions of gas 

volume fraction (Mesh03,SST)

Plot of gas volume fraction (Mesh03, SST)



FRIGG-6a Test Case

Baseline Setup: SST
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Outlet Outlet

Two cross-sectional distributions of liquid 

temperature (Mesh03,SST)

Plot of liquid temperature (Mesh03,SST)



FRIGG-6a Test Case

Mesh Comparison
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FRIGG-6a Test Case

Mesh Comparison
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FRIGG-6a Test Case

Mesh Comparison

© 2009 ANSYS, Inc.  All rights reserved. 62 ANSYS, Inc. Proprietary



Turbulence Modeling in Rod 

Bundles

• So far good comparison, but…

– Wall friction in rod bundles leads to secondary 

flows

– Anisotropic flow and turbulence
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– SST ⇒ BSL RSM 

– Does not influence so much cross-sectional 

averaged flow properties

– Secondary flows affect steam & temperature 

distributions on wall surfaces

� Can be relevant for safety!



FRIGG-6a Test Case

Turbulence Model Comparison
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FRIGG-6a Test Case

Turbulence Model Comparison
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FRIGG-6a Test Case

Turbulence Model Comparison
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FRIGG-6a Test Case

Turbulence Model Comparison

© 2009 ANSYS, Inc.  All rights reserved. 67 ANSYS, Inc. Proprietary



FRIGG-6a Test Case

Turbulence Model Comparison

SST model BSL RSM model
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Outlet

Plot of gas volume fraction

Outlet



FRIGG-6a Test Case

Turbulence Model Comparison

• SST model ���� NO secondary flows
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Contour plot of gas volume fraction (Outlet)Plot of gas volume fraction (Outlet)



FRIGG-6a Test Case

Turbulence Model Comparison

• BSL RSM model ���� secondary flows
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Contour plot of gas volume fraction (Outlet)Plot of gas volume fraction (Outlet)



New R&D Consortium

ANSYS 
Germany

TUD, Dept. 
Fluid 

Mechanics

Karlsruhe 
Inst. of 

Technology 
(KIT)

R&D Initiative:
“Modeling, Simulation &  
Experiments for Boiling 
Processes in Fuel 
Assemblies of PWR”
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FZ 
Dresden/
Rossen-

dorf

TUD, Dept. 
Nucl. Eng.

TUD 
Medical 
Faculty

Univ. Appl. 
Sciences 

Zittau/ 
Görlitz

Univ.
Bochum, 

Dept. 
Energy 

Systems

TUM, Dept. 
Thermo-

dynamics



Modeling, Simulation & Experiments for 
Boiling Processes in Fuel Assemblies of PWR

• Ultrafast electron beam X-ray CT of fuel rod bundle in 
titanium pipe on TOPFLOW @ FZD:
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Images by courtesy of U. Hampel, FZD



Modeling, Simulation & Experiments for 
Boiling Processes in Fuel Assemblies of PWR

Wall boiling 
simulation in 
a 3x3 rod 
bundle with 
spacer grid:
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Wall 
superheat 
TW-TSat



Summary & Outlook

• Overview on ANSYS CFD boiling model 
development and validation

• Continuous effort in model improvement, R&D

• Emphasis in validation on BPG, comparison to 
data, geometry & grid independent modeling

• Complex MPF phenomena 
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• Complex MPF phenomena 
���� number of uncertainties remaining for 

further investigations ���� detailed experiments

• Outlook:
– Ongoing & customer driven CFD model development

– Research cooperation with Industry & Academia

– Coupling of wall boiling model to inhomogeneous MUSIG

– Extension of the wall heat partitioning in wall boiling model
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Thank You!


