

9th HZDR-ANSYS Workshop Multiphase Flows.

Conxita.Lifante@ansys.com

© 2010 ANSYS, Inc. All rights reserved.

- Coupling between wall boiling modelling and population balance method (MUSIG)
 - Mathematical formulation
- Validation study (homogeneous MUSIG)
 - Discretization independence analysis
 - Spatial
 - Bubble class
 - Comparison to results obtained with Kurul & Podowski correlation
- Conclusions & Outlook

- Coupling between wall boiling modelling and population balance method (MUSIG)
 - Mathematical formulation
- Validation study (homogeneous MUSIG)
 - Discretization independence analysis
 - Spatial
 - Bubble class
 - Comparison to results obtained with Kurul & Podowski correlation
- Conclusions & Outlook

- Coupling between wall boiling modelling and population balance method (MUSIG)
 - Mathematical formulation
- Validation study (homogeneous MUSIG)
 - Discretization independence analysis
 - Spatial
 - Bubble class
 - Comparison to results obtained with Kurul & Podowski correlation
- Conclusions & Outlook

Modelling of Sub-cooled Boiling at a Heated Wall

The RPI Wall Boiling Model:

- Constant pressure \rightarrow given T_{sat}
- Overall heat flux Q_w given
- Heat flux partitioning:

 $Q_w = Q_f + Q_e + Q_q$

- Q_f single phase convection
- Q_e evaporation
- Q_q quenching

(departure of a bubble from the heated surface \rightarrow cooling of the surface by fresh water)

Coupling Between Wall Boiling Modelling and Population Balance

- Size fraction equations derived from mass balance Std. MUSIG Mass transfer due to phase change extension $\frac{\partial}{\partial t}(\rho_{i}r_{d}f_{i}) + \frac{\partial}{\partial x^{j}}(\rho_{i}r_{d}U_{i}^{j}f_{i}) = S_{B_{B}} - S_{D_{B}} + S_{B_{C}} - S_{D_{C}} + S_{i}$ extension
- RPI wall heat partitioning $Q_{wall} = Q_{convl} + Q_{quench} + \dot{m}_{evap} h_{lg}$
- At the heated walls one more source term is added to one size fract. Eq.

$$S_{W}\left[kg / m^{3}s\right] = \dot{m}_{evap}\left[kg / m^{2}s\right] \frac{S[m^{2}]}{V[m^{3}]}$$

RPI: Evaporation rate

Coupling Between Wall Boiling Modelling and Population Balance

• Homogeneous MUSIG:

Gas

- \dot{m}_{evap} \rightarrow Size fraction class 5
- \dot{m}_{evap} Mass conservation Gas
- Derived Source Terms → Momentum Gas

Coupling Between Wall Boiling Modelling and Population Balance

Inhomogeneous MUSIG:

Gas 2-Active Phase Gas 1

- \dot{m}_{evap} \rightarrow Size fraction class 5
- \dot{m}_{evap} > Mass conservation Gas 2
- Derived Source Terms → Momentum Gas 2

Motivation

• Coupling between wall boiling modelling and population balance method (MUSIG)

Mathematical formulation

- Validation study (homogeneous MUSIG)
 - Discretization independence analysis
 - Spatial
 - Bubble class
 - Comparison to results obtained with Kurul & Podowski correlation
- Conclusions & Outlook

Validation Study

ANSYS[®]

Main setup parameters:

- Steady state
- High resolution advection scheme
- Turbulence model: SST
- Morel model for source terms in turb. eq.'s ($C_{\epsilon,3} = 1.0$)
- Turbulent dispersion (FAD) & drag force
 → Grace with correction coefficient -0.5
- Constant value for wall roughness $k_r = \eta d_W \left(1 \frac{Q_{convl} + Q_{convl}}{Q_{convl}} \right)$

$$\left(\frac{Q_{quench}}{Q_{quench}}\right)^{\zeta} = 0.575mm$$

- Wall Contact Model: $AF_{liquid} = 1$; $AF_{gas} = 0$
- Heat transfer correlation: Tomiyama

Validation Study

Main setup parameters:

- RPI model & bubble departure diameter: 1.3 mm
- Homogenous MUSIG model, 15 bubble classes
 - $d_{min} = 0.25 \text{ mm}, d_{max} = 3.75 \text{ mm}$
 - Prince/Blanch for coalescence ($F_c=4$); no breakup ($F_B=0$)
- For comparison: monodisperse simulation with Kurul & Podowski assumption on $d_B = f(T_{Sub}) = f(T_{Sat} T_L)$

NSYS[®]

• Spatial grid hierarchy:

	Mesh 1	Mesh 2	Mesh 3	Mesh 4
Radial cells	8	16	32	64
Axial cells	220	440	880	1760
Total Cells	1760	7040	28160	112640
У ⁺ _{max}	381	199	104	86

Mesh3	Single phase
У ⁺ _{max}	34

R* dimensionless radius

$$R^* = \frac{R - R_i}{R_o - R_i}$$

• Bubble size class discretization hierarchy:

	Discret. 1	Discret. 2	Discret. 3	Discret. 4
Number of classes	7	15	30	60
Diameter step [mm]	0.50	0.23	0.12	0.06

ANSYS[®]

Comparison to K&P correlation

Comparison to K&P correlation

© 2010 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Comparison to K&P correlation

- Coupling between wall boiling modelling and population balance method (MUSIG)
 - Mathematical formulation
- Validation study (homogeneous MUSIG)
 - Discretization independence analysis
 - Spatial
 - Bubble class
 - Comparison to results obtained with Kurul & Podowski correlation
- Conclusions & Outlook

Conclusions & Outlook

- MUSIG-RPI coupling
 - In ANSYS CFX implemented (available in release 14, already PV3)
 - improves the accuracy of the simulations
 - provides more detailed information about bubble size distribution
- Homog. model was validated
- Consider two adjacent bubbles classes at the wall
- Include further phenomena in the wall heat partitioning
 - Non equilibrium RPI (convection to gaseous phase)
 - Sliding bubbles
- Improve wall treatment for two-phase flows

Acknowledgements

 This research has been partially supported by the German Ministry of Education and Research (BMBF, Grant No. 02NUK010G) in the framework of the R&D funding concept of BMBF "Basic Research Energy 2020+"

SPONSORED BY THE

Federal Ministry of Education and Research

 Dr. E. Krepper & Dr. R. Rzehak (HZDR) for the valuable discussions