

Realize Your Product Promise™

Investigation of the Thermal Mixing in a T-Junction Flow With Different SRS Approaches

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

M. S. Gritskevich, A. V. Garbaruk St. Petersburg State Polytechnical University & NTS, Russia

Th. Frank, F. R. Menter PBU, ANSYS Germany, Otterfing

- The OECD/NEA Benchmark on thermal mixing in T-junctions
- The Vattenfall T-junction experiment
- CFD test case description
- Results
- Summary

OECD/NEA Benchmark on Thermal Mixing in T-junctions

- OECD/NEA Benchmark, 2009-2010; CSNI Report in 2011
- Odemark, Y. et al., 2009. High-Cycle Thermal Fatigue in Mixing Tees: New Large-Eddy Simulations Validated Against New Data Obtained by PIV in the Vattenfall Experiment. In *Proceedings of the 17th International Conference on Nuclear Engineering*.
- Mahaffy, J., 2010. Synthesis of Results for the T-Junction Benchmark. In CFD4NRS-3 Conference on Experimental Validation of CFD and CMFD Codes to Nuclear Reactor Safety Issues. Washington, DC, USA, p. 3.

3 © 2011 ANSYS, Inc. August 9, 2013

ANSYS[®]

mean U,V,W & RMS: vertical & horizontal central lines at shown cross-sections

x-lines at walls at 0°, 90°, 180°, 270°

T_{mean} & RMS:

ANSYS Thermal Striping Phenomenon

- Intensive turbulent mixing downstream the T-junction
- Strong temperature fluctuations near the wall, top & side walls in particular

ANSYS Expected SRS Model Behavior?

Globally or locally unstable, or even stable?

Jet in cross-flow, SAS

Experiment: very fast mixing, no large stable vortices

T-junction, SAS, bounded CD

Main pipe: $-3 \le x/D \le 20$, D=0.14m

Branch pipe: $z/d \le 3.1$, d=0.10m

Grid: 4.9M elements, hexahedral

Wall y⁺: ~4÷6, locally up to 12 in the mixing zone

Timestep: 1 ms \rightarrow CFL: bulk ~0.5, mixing zone ~1 ÷ 1.5

ANSYS Turbulence Models: CFX

SST-SAS without Zonal LES

- Central differences (CD)
- Standard bounded CD (BCD)
- Weakly bounded CD (WBCD)

SST-SAS with Zonal LES

- Forcing planes ½Ø upstream the junction
- WBCD

ANSYS CFD Model Setup

Inlet profiles

- Main pipe (T=19°C, U_{bulk}=0.58 m/s)
 - $_{\odot}\,$ Velocity and turbulence profiles from calculation in periodic pipe
- Branch pipe (T=36°C, U_{bulk}=0.76 m/s)
 - $\circ\,$ Velocity and turbulence profiles obtained from calculation in pipe flow to match the measured boundary layer thickness (δ ~1cm)

Solver setup

- CD Central difference or BCD - bounded central difference scheme for advection terms
- Standard scheme for pressure interpolation
- Green-Gauss cell based (GGCB) scheme for gradients
- SIMPLEC with 10 iter. per time step for pressure-velocity coupling
- 2nd order Euler scheme for time discretization

ANSYS CFX Results

Calculation of T-Junction in CFX - Influence of Advection Scheme -

The flow was calculated in ANSYS CFX with SAS and different advection schemes available in the code:

- Central differences (CD)
- Standard bounded CD (BCD)
- Weakly bounded CD (WBCD)

Results are strongly affected by the advection scheme.

Calculation of T-Junction in CFX - Influence of Zonal LES, weak BCD -

Calculation of T-Junction in CFX ANSYS[®] - Influence of Zonal LES, weak BCD -Wall temperature in the fatigue zone **Top wall line** $\overline{\theta} = (\overline{T} - T_{cold}) / (T_{hot} - T_{cold})$, top wall line Experiment 0.8 With Zonal LES --- Without Zonal LES 0.6 θ 0.4 0.2 0 10 15

5

x/D

20

ANSYS Fluent Results

Isosurfaces of Q-criterion Colored with Temperature by Different SRS Models

Flow results are very sensitive to numerics

ANSYS[®]

- SAS & BCD scheme
 → URANS solution is obtained
 SAS & CD → LES
- For DDES the effect of numerics is smaller than for SAS but still visible on Q-criterion isosurfaces
- For ELES-WMLES there is virtually no effect of the advection scheme on the solution

© 2011 ANSYS, Inc.

17

Thermal Stripping and Thermal Mixing: Mean and RMS Temperature Contours

- The hot water is strongly cooled downstream of the junction and at X/D=4.6 the flow in the pipe has nearly constant temperature
- The thermal striping phenomenon takes place mostly in the upper part of the mixing layer, where high values of temperature fluctuations (about 0.3·∆T) are observed
- Further downstream, the magnitude of these fluctuations decreases and at X/D=4.6 it is as low as 0.1·∆T with a nearly constant distribution across the section

18 © 2011 ANSYS, Inc. August 9, 2013

Mean and RMS Velocity Profiles for Different Models with CD Scheme

-0.25

0.25

Ó.

Z/D

All models are able to predict the time averaged mean and RMS velocity profiles with good accuracy, when combined with the CD scheme for advection

-0.25

Ċ,

Z/D

0.25

• Very good agreement between the results and the experimental data

0.25

-0.25

΄ ά

Z/D

0.25

-0.25

Ċ

Z/D

ANSYS[®]

Mean and RMS Velocity Profiles for Different Models with BCD Scheme

The change of the scheme from CD to BCD does not impair the solution for the DDES and ELES-WMLES approaches

Z/D

Z/D

Z/D

SAS model reverts back to URANS mode when used with the BCD scheme

• The lack of the resolved coherent turbulent structures downstream of the junction results in a significant underestimation of resolved RMS velocities

Z/D

ANSYS

Mean and RMS Temperature Profiles for Different Models with CD Scheme

Mean Temperature at Different Wall Sections (Top-Front-Bottom-Rear) Experiment 825 0.825 825 0.825 DDES, CD Ö o. (T-T_{cold})/∆T 275_0.55_0 ^{cold})/∆T 0.55_0 **ELES-WMLES. CD** _{cold})/∆T 0.55_0 ^{cold})/∆T 0.55 C SAS. CD (T-T 275_(Ŀ **(T-T** 275 ö Ö o. 0 ĥ d X/D X/D X/D X/D

RMS Temperature at Different Wall Sections (Top-Front-Bottom-Rear)

Best results are obtained with the use of ELES-WMLES approach, for which almost perfect distributions of the wall temperatures & T_{RMS} are obtained

- For SAS and DDES models, the results of the wall temperature are noticeably less accurate than those obtained with the ELES-WMLES approach
- The results for the RMS temperature indicate that all models predict RMS temperature fluctuations in good agreement with the data

Mean and RMS Temperature Profiles for Different Models with BCD Scheme

Influence of advection scheme is marginal for ELES-WMLES

For SAS with BCD, the thermal mixing is predicted incorrectly

- The wall temperature is significantly underestimated in all considered wall sections
- Similar tendencies, but less severe, are observed for DDES with BCD as well

- OECD/NEA T-junction benchmark successfully investigated with ANSYS Fluent & ANSYS CFX
- All SRS models are able to accurately predict the mean and RMS velocity profiles, when used with low dissipation CD scheme
 - Weak local instability can lead to URANS solution with SAS and slightly more dissipative advection schemes (BCD, HiRes)
 - Can lead to delayed or not sufficient turbulent mixing
 - DDES model less sensitive to numerical settings

Best SRS approaches:

- ✓ Synthetic turbulence methods:
 - **Embedded LES** in ANSYS FLUENT, **Zonal LES** in ANSYS CFX
- ✓ Less dependent on the applied advection scheme
- Very good agreement with the experimental data for sensitive T_{mean} and T_{RMS} flow characteristics

31 © 2011 ANSYS, Inc. August 9, 2013

ANSYS®

Questions ?

