

DrivAer - Aerodynamic Investigations for a New Realistic Generic Car Model using ANSYS CFD

Thomas Frank^(*), Benedikt Gerlicher^(*), Juan Abanto^(**) ^(*) ANSYS Germany, Otterfing, Germany ^(**)ANSYS Inc., Lebanon, NH, USA Thomas.Frank@ansys.com

- The DrivAer Benchmark by TU Munich, Institute of Aerodynamics and Fluid Mechanics

 Investigated DrivAer car model variants
- The meshing process
- CFD investigations for the DrivAer fastback car:
 - $F_S_woM_wW$
 - $F_D_wM_wW$
- Comparison to TU Munich wind tunnel data
- Cross-comparison of ANSYS CFX and ANSYS Fluent
- Summary & Outlook

- Automotive Aerodynamics Validation of ANSYS CFD
- Generic reference model with modern car geometry

- Investigation of meshing process and technologies for contemporary and complex car body geometry
 - Including wheels
 - Including mirrors
 - Including detailed floor with exhaust system
- Validation of ANSYS CFX & ANSYS Fluent
- Comparison to TU Munich wind tunnel data
- Turbulence model validation and data comparison
 → steady/transient SST and SAS-SST

ANSYS DrivAer Geometry Development of the DrivAer model by TU Munich

BMW 3 Series Limousine

Audi A4 Limousine

Courtesy by TU Munich, Inst. of Aerodynamics 2013 Automotive Simulation World Congress

ANSYS DrivAer Geometry Development of the DrivAer model by TU Munich

BMW 3 Series Limousine

DriveAer Car Body

Audi A4 Limousine

Courtesy by TU Munich, Inst. of Aerodynamics 2013 Automotive Simulation World Congress

ANSYS DrivAer Geometry

Development of the DrivAer model by TU Munich

Courtesy by TU Munich, Inst. of Aerodynamics

ANSYS Testcase Description - Geometry

Development of the DrivAer model by TU Munich

Naming conventions Rear end Underbody Mirrors Wheels

Courtesy by TU Munich, Inst. of Aerodynamics 2013 Automotive Simulation World Congress

ANSYS Testcase Description - Geometry

Development of the DrivAer model by TU Munich

Naming conventions

Rear end

Underbody

Mirrors

Wheels

Courtesy by TU Munich, Inst. of Aerodynamics

ANSYS Testcase Description - Geometry Development of the DrivAer model by TU Munich

Naming conventions

Rear end

Underbody

Mirrors

Wheels

Courtesy by TU Munich, Inst. of Aerodynamics 2013 Automotive Simulation World Congress

ANSYS Testcase Description - Geometry Development of the DrivAer model by TU Munich

Naming conventions Rear end Underbody Mirrors Wheels

Courtesy by TU Munich, Inst. of Aerodynamics

ANSYS Experimental Facility and Data

- The experimental data is provided by the Institute of Aerodynamics and Fluid Mechanics, TU Munich
- Experiments are performed in a wind tunnel including a moving belt @ 1:2.5 model scale

ANSYS Test Case Conditions

Model Scale	1:2.5
Inlet velocity	40 m/s
Air Temperature	20°C
Air Pressure	1.013 bar
Air Density	1.2047 kg/m ³
Reference Length (Length of car model)	1.84 m
Resulting Reynolds number	4.87*10 ⁶
Ground velocity	40 m/s

2013 Automotive Simulation World Congress

ANSYS Experimental Uncertainties

Also DrivAer experiments are carried out with care, the data are subject to the following uncertainties:

- Blockage of the TUM wind tunnel cross sectional area is rather high for the car model
- Existent pressure gradient over the length of the measurement section of the wind tunnel
- Efficiency of boundary layer scoop
- Necessity to take into account rolling friction and aerodynamic effects from rotating wheels and tire rim design; but tires are not connected to the weights (i.e. C_D and C_L measurement system)
- Disturbance from model support system (MSS) and wheel supports on car aerodynamics
- Influence from interaction of the rolling road system (RSS) with not moving side floor of the wind tunnel
- General measurement errors of applied measurement technologies (weights, pressure transducers)

Investigated DrivAer Car Models

E_S_woM_woW Estate_ Smooth underbody_ without Mirrors_ without Wheels	
F_S_woM_wW Fastback_ Smooth underbody_ without Mirrors_ with Wheels	
F_D_wM_wW Fastback_ Detailed underbody_ with Mirrors_ with Wheels	

ANSYS Investigated DrivAer Car Models

E_S_woM_woW Estate_ Smooth underbody_ without Mirrors_ without Wheels	
F_S_woM_wW Fastback_ Smooth underbody_ without Mirrors_ with Wheels	
F_D_wM_wW Fastback_ Detailed underbody_ with Mirrors_ with Wheels	

ANSYS Geometry & Computational Domain

Model Scale to Car Size	1:1	
Inlet velocity	16 m/s	
Air Temperature	20°C	
Air Pressure	1.013 bar	
Air Density	1.2047 kg/m ³	
Reference Length (Car Length)	4.6	
Resulting Reynolds number	4.87*10 ⁶	
Ground velocity	16 m/s	

Dimensions of the Bounding Box				
Model scale	1:1	1:1		
Total length	10L	46.13 m		
Total width	11B	20.02 m		
Total height	8H	11.34 m		

October 31, 2013

2013 Automotive Simulation World Congress

ANSYS Meshing Process

- Meshing process using:
 - ANSYS DesignModeler 14.5
 - ANSYS TGrid in Fluent 14.5

MSYS F_D_wM_wW: Computational Mesh2

- Full 3d model \rightarrow SAS-SST
- ~110 Mill. Cells
- Four refinement zones •
- 20 Inflations on the car
- 15 Inflations on the road
- y⁺<1 on the car body
- **MRF-Zones for the rims** • (MRF=Moving Reference Frame)

Connection between road and wheels

ANSYS Setup for Road & Wheels

- Road = Moving wall
- Rotational boundary condition on tire
- MRF-Zones at the rims (Moving Reference Frame)

Sep 21, 2012 ANSYS Fluent Meshing 14.5 (3D, serial)

Mesh Restrictions: unused free

24

October 31, 2013

ANSYS Simulation Matrix

Timestep		Mesh 1	Mesh 2		Mesh 2 Full Domain	
Steady SST	$\Delta t = 0.1 ms$	X				
Steady SST	$\Delta t = 1 \text{ ms}$	X	X	X	X	X
Steady SST	∆t = 10 ms	X				
Transient SST	∆t = 1 ms	X			X	X
Transient SAS-SST	$\Delta t = 1 \text{ ms}$				X	X
Transient SAS-SST	$\Delta t = 0.2 \text{ ms}$				X	X

X − ANSYS CFX investigation X − ANSYS Fluent investigation

ANSYS Investigation Results F_S_woM_wW

F_S_WOM_WW - Fastback_Smooth underbody_without Mirrors_with Wheels

ANSYS F_S_woM_wW: Comparison of Drag

* - Simulation did not totally converge within the given coefficient loops

ANSYS ANSYS CFD, SAS-SST – C_D Histories

ANSYS CFD, SAS-SST – C_p at Symmetry Plane y=0mm (top)

ANSYS CFD, SAS-SST – C_p at Symmetry Plane y=0mm (bottom)

ANSYS CFD, SAS-SST – C_p at z=0.15m

ANSYS Comparison of Q-Criterion

URANS SST

Δ t=0.001s 2,942 Timesteps => 2.942s

Q criterion level = 0.0005

SAS-SST

Δ t=0.001s **High Resolution** 1,000 Timesteps => 1s

Vortex Structure from Transient Simulation, SAS-SST, $\Delta t=0.2ms$

Vortex Structure from Transient Simulation, SAS-SST, $\Delta t=0.2ms$

ANSYS Investigation Results F_D_wM_wW

F_D_wM_wW - Fastback_Detailed underbody_with Mirrors_with Wheels

ANSYS CFD, URANS SST & SAS-SST $- C_D$ Histories –

ANSYS CFD, SAS-SST – C_p at Symmetry Plane (top)

ANSYS CFD, SAS-SST – C_p at Symmetry Plane (bottom)

ANSYS CFD, SAS-SST – C_p at z=0.15m (left)

ANSYS CFD, SAS-SST – C_p at z=0.15m (right)

ANSYS CFX, URANS SST, $\Delta t=0.2ms$ – Asymmetric wake –

ANSYS CFX, URANS SST, ∆t=0.2ms – Asymmetric wake –

ANSYS CFX, URANS SST, ∆t=0.2ms – Asymmetric wake –

ANSYS Fluent SAS-SST, ∆t=0.2ms – Q-Criterion Isosurfaces –

Q criterion level = 0.0005

Realize Your Product Promise™

Summary & Conclusions

Structural Mechanics

Electromagnetics

Systems and Multiphysics

ANSYS Summary & Outlook

- Simulating the DrivAer car is first of all a meshing challenge!
- Established a meshing process, where ANSYS TGrid in Fluent 14.5 and direct CAD model tessellation was applied

- Three different DrivAer cars meshed and simulated → (U)RANS SST and SAS-SST comparison
- Applied feasible amount of CFD best practice related investigations:
 - mesh and timestep dependence
 - iteration error \rightarrow convergence
 - steady vs. transient
 - (U)RANS vs. scale-resolving turbulence modeling

ANSYS Summary & Outlook (cont.)

- Reasonable good agreement for C_P value comparison to data
- Influence from the model support system (MSS) on C_P on the top of the car roof observable
- Differences at point of vortex impingement in the rear of the car
- CFD predicted slightly higher C_D values in comparison to data
 - Influence from wind tunnel geometry
 - Quite high blocking ratio for this large model in TUM wind tunnel
 - Influence from road simulator vs. entirely moving road (CFD)
 - → Desirable to have PIV data for flow field comparison
- Good and very consistent comparison between ANSYS CFX and ANSYS Fluent for investigated DrivAer car models
- Further streamlining and refinement of the ANSYS TGrid in Fluent based meshing process possible
 - \rightarrow e.g. longer extension of refined zones behind the car

Questions?

- 1. http://www.aer.mw.tum.de/abteilungen/automobilaerodynamik/drivaer/
- 2. http://www.cfd-online.com/Wiki/DrivAer_Model
- 3. A. Heft, T. Indinger, N. Adams: *"Experimental and Numerical Investigation of the DrivAer Model"*, ASME 2012, July 8-12, 2012, Puerto Rico, USA, FEDSM2012-72272
- 4. A. Heft, T. Indinger, N. Adams: *"Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations"*, SAE 2012 World Congress, April 23-26, 2012, Detroit, Michigan, USA, Paper 2012-01-0168
- 5. P. Nathen: *"Investigation of the Complex Turbulent Flow around a Generic Vehicle"*, MSc Thesis, TU Munich, Inst. Aerodynamics and Fluid Dynamics, April 2012