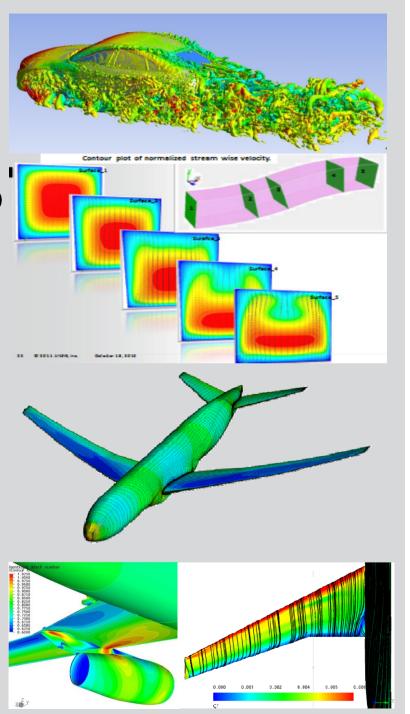
Realize Your Product Promise™

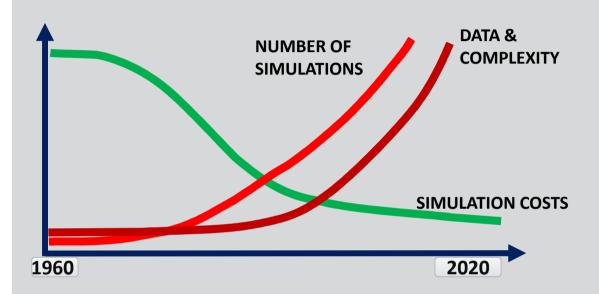
A Database of ANSYS Fluid Solver Verification & Validation Tests based on ANSYS EKM

Fluid Dynamics

Structural Mechanics

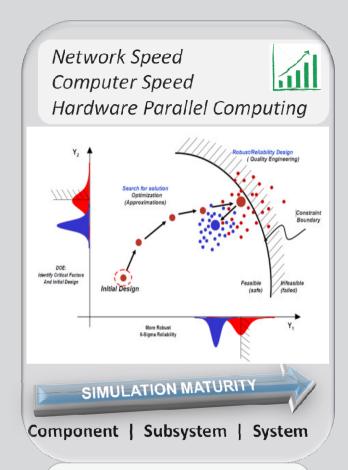

Electromagnetics

Systems and Multiphysics


Thomas Frank
ANSYS Fluids Validation Manager
ANSYS Germany, Otterfing
Thomas.Frank@ansys.com

ANSYS Outline

- Introduction
- The target of a centralized ANSYS CFD V&V test case database
- The solution ANSYS EKM
 - The technical infrastructure
 - The database structure
 - The ANSYS EKM implementation
 - EKM V&V database usage scenarios
 - The V&V database content
- Future outlook on ANSYS CFD V&V



ANSYS Introduction: CAE Trends

Traditional Growth - Linear Robust Design & Parametric Studies – Exponential

- Reduced costs & increased CFD capabilities drive the increased use of CFD in industrial design processes
- CFD use for efficiency optimization of designs
 - → CFD based design decisions
 - → increased importance of thoroughly validated CFD model capabilities & CFD Best Practice

TECHNOLOGY DRIVES SYSTEMS SIMULATION & ROBUST DESIGN

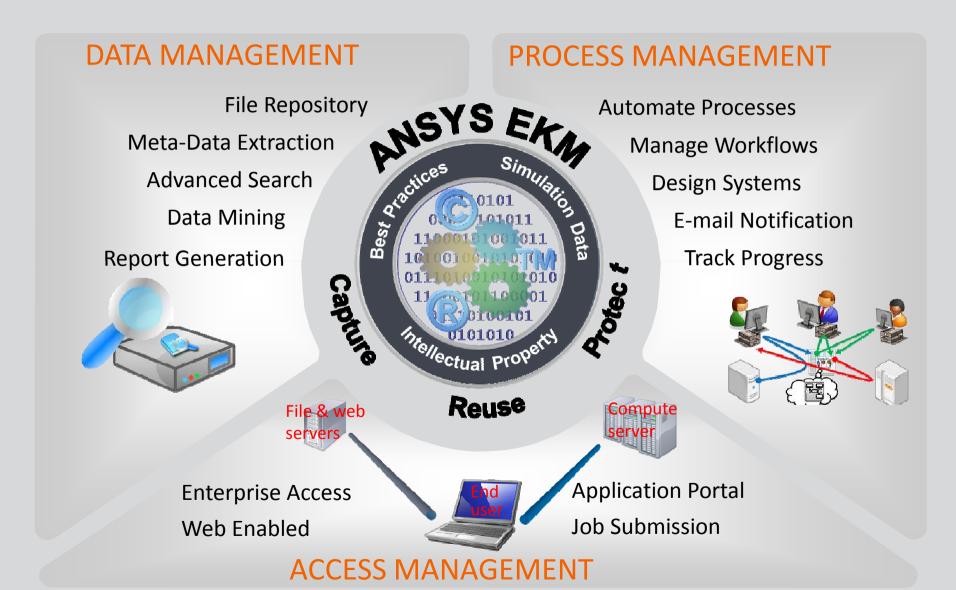
ANSYS Introduction – CFD Solver V&V

- Verification & validation has long tradition in CFD solver development
- 2000-2004 : QNET-CFD **EU Network on Quality and Trust in** the Industrial Application of CFD → ERCOFTAC CFD BPG's
- OECD/NEA WGAMA (Working Groups on Management of Accidents)
 - → CFD V&V related activities since ~1998
 - → ISP's (Intl. Standard Problems)
 - → CFD Validation Benchmarks
- ASME V&V 10-2006 Guide for **V&V** in Computational Solid **Mechanics**
- ASME V&V 20-2009 Standard for V&V in CFD and Heat Transfer
- ASME V&V conferences since 2012

ANSYS The Historical ANSYS Picture

ANSYS CFD Solver V&V had historically several issues:

- Distributed & loosely coordinated CFD solver V&V activities
- Many different repositories and sources for CFD solver V&V material
 - 2000-2007 the technical infrastructure has not yet allowed to centralize repositories of large CFD data
 - Islands of validation data & studies
 - Global web portals & intranet sites
 - Databases & local desktop repositories
 - Data duplication
 - "Reinventing" solution strategies / cases
 - Customer support and CFD solver development repositories
 - World-wide ANSYS offices & **Channel partners**



ANSYS CFD Solver V&V Initiative

The Target:

- Collect and store all investigated V&V test case material for ANSYS CFD solver products in a single place in a unified format
- Establish unified V&V procedures based on the ERCOFTAC CFD Best Practice Guidelines (2000) and the ASME V&V 20 Standard (2009)
- Establish a quality assurance and test case reviewing process
- Providing ANSYS customers with high quality CFD solver validation material
- Establish permanent improvement of our CFD solver products as integral part of software development process by investigating validation cases alongside code implementation
- Enable for world-wide ANSYS staff:
 - Easy access to the V&V test case database (doc, search, retrieval)
 - Knowledge sharing and leveraging
 - Team collaboration on ANSYS CFD solver V&V and model development
 - Support for sales & marketing teams

The Solution for V&V Database – ANSYS EKM

The Solution for V&V Database – ANSYS EKM

DATA MANAGEMENT

PROCESS MANAGEMENT

File Repository

Meta-Data Extraction

Advanced Search

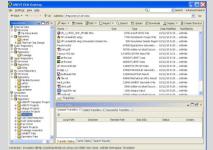
Automate Processes

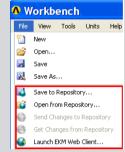
Manage Workflows

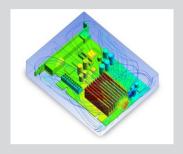
Design Systems

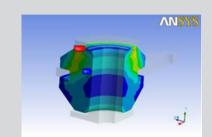
- EKM provides more than a web portal or a plain file server
- Ability to easily store & retrieve simulation data
- Automated metadata extraction on upload
- Compatible with all ANSYS products and other CAE data
- Efficient team collaboration platform
- Advanced meta-data based search, test case property, **Quality Assurance & workflow management**

Enterprise Access Web Fnabled




Application Portal Job Submission

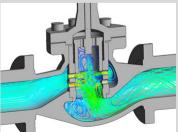

ACCESS MANAGEMENT

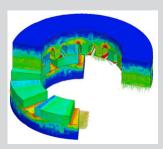


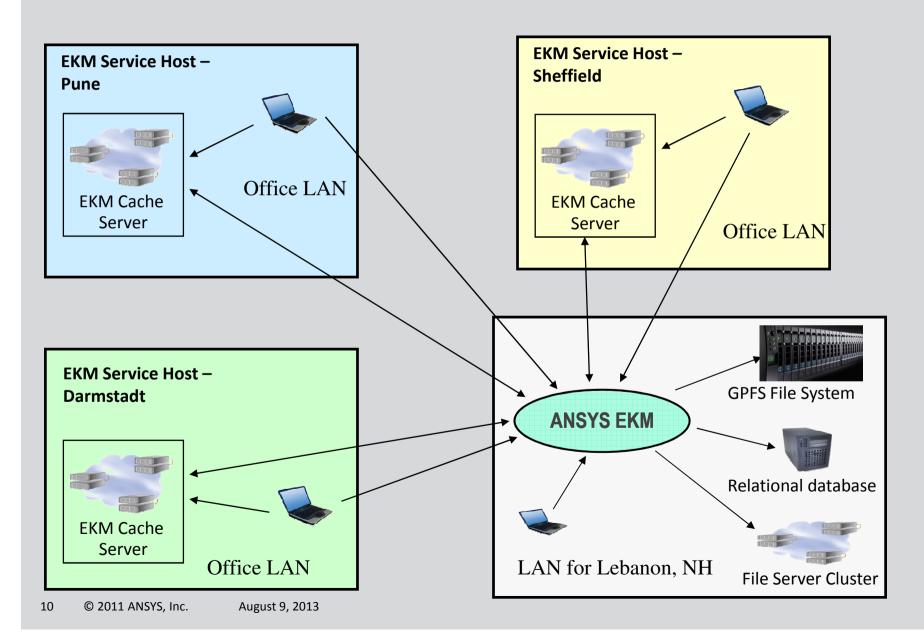
Easy Access to ANSYS EKM

ANSYS WB or EKM Desktop 0 0 0 0 0

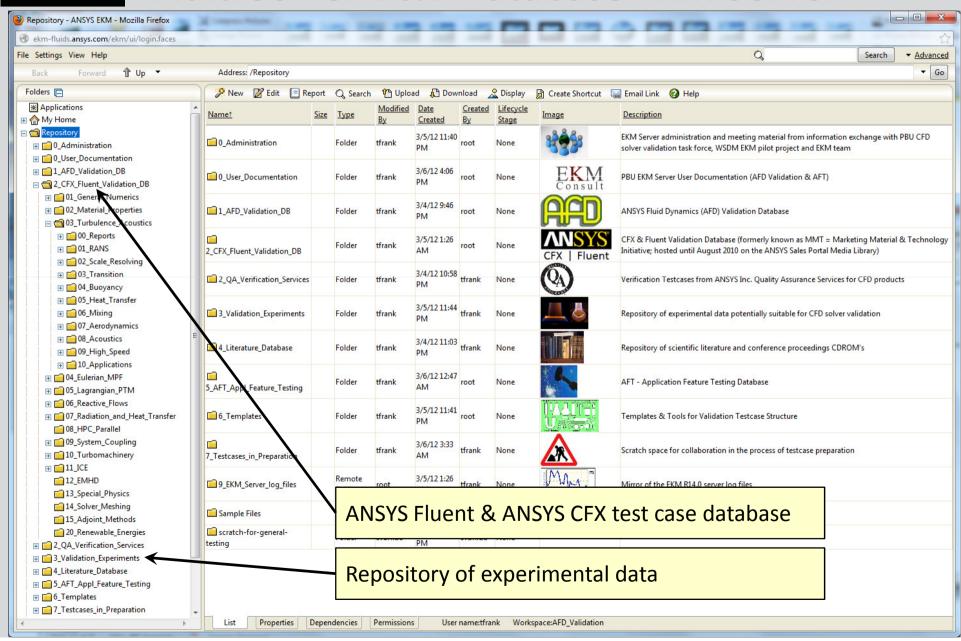
Installed by default with **ANSYS WB**







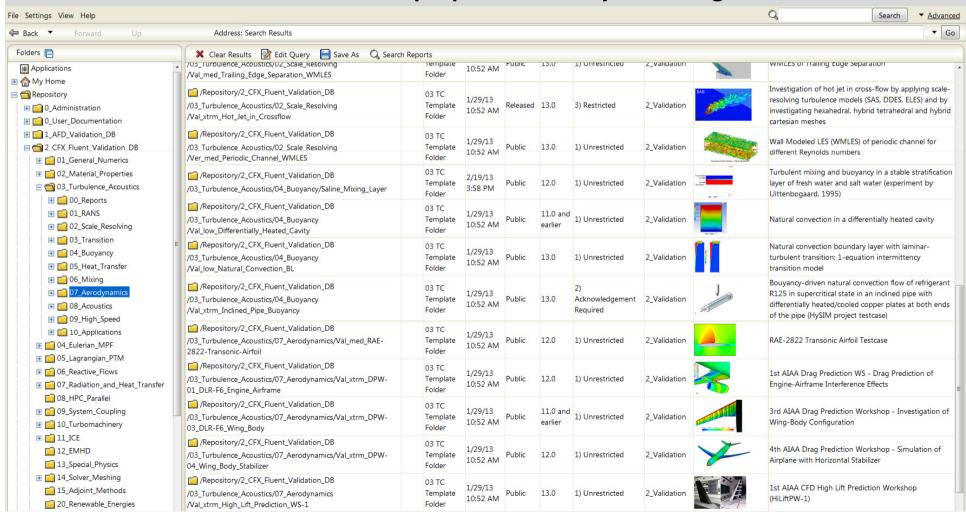
Doesn't need any installation!!



ANSYS World-wide distributed EKM Infrastructure

ANSYS°

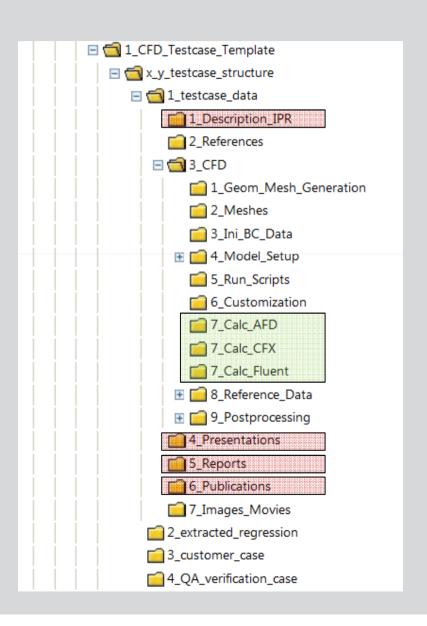
Fluid Solver V&V Database EKM Server



ANSYS V&V Database Structure

Database asset = Validation Test Case

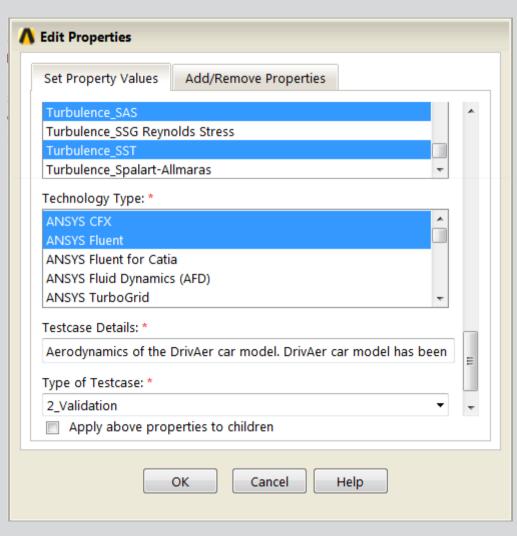
- = EKM Customized Type
- = folder structure + EKM properties + lifecycle management workflow



NNSYS V&V Database – Test Case Structure

Basic asset – the V&V test case:

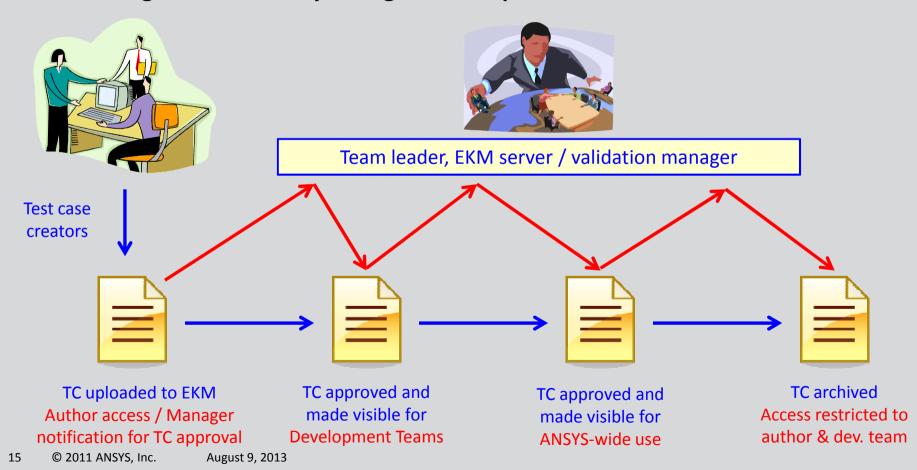
- Legal matter
- References
- **Experimental data**
- CFD Investigation
- **Documentation**
- Marketing material
- Classification & keywords
- ⇒ Unified folder structure
- ⇒ Assigned EKM properties
- ⇒ Connected quality assurance process
- ⇒ Connected access control



NSYS V&V Database – Test Case EKM Properties

Assignment of collateral information to test cases:

- **EKM** properties for basic assets
 - Type of test case
 - Short description
 - ANSYS Release
 - IPR status
 - Status of investigation
 - Man hours & comp. effort
 - Technology area / CFD solvers
 - Keywords
- ⇒ Defined in EKM customized folder type (the basic asset type)
- ⇒ Basis for property based search



NSYS V&V Database – Lifecycle Management

Quality assurance and reviewing process:

- **EKM LCM defines workflow for review and approval**
- LCM stage automatically changes access permissions for database assets

ANSYS Defined V&V Processes: CFD Best Practice

Quantification of the simulation error

Thoroughly documentation of the test case

Numerical error

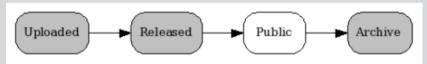
- Iteration error → depth of convergence, residual level
- Round-off (computer) error → single vs. double precision
- Discretization error → mesh resolution & time step independence

Model error

- Sensitivity to physical model(s) involved
- How empiricism affects simulation accuracy

Systematic error

- Remaining reason(s) simulation & reality do not match
- **Uncertainties in experimental setup & data**
- Simplified geometry, simplified flow physics (?), fluid properties, boundary conditions, steady vs. unsteady, modeled vs. resolved physics (e.g. RANS vs. LES), etc.



Usage Scenarios – Accessing Information (I)

- Metadata are automatically extracted from all uploaded files
- **Extraction of simulation details report** from ANSYS CAF files
- Protocol of lifecycle stage changes → traceability

9/24/12 2:54 PM	jsanyal	State change proposed from Uploaded to Released	files uploaded
9/24/12 2:54 PM		Signoff started	
9/24/12 3:44 PM	sjain	Review started	
9/24/12 8:29 PM	sjain	Approved	promoted by sj
9/24/12 8:29 PM		Signoff completed	
9/24/12 8:29 PM		State change completed from Uploaded to Released	
9/24/12 8:30 PM	sjain	State change proposed from Released to Public	promote to public
9/24/12 8:30 PM		Signoff started	
9/24/12 8:30 PM	sjain	Review started	
9/24/12 8:31 PM	sjain	Approved	reviewed and promoted to public by sj.
9/24/12 8:31 PM		Signoff completed	
9/24/12 8:31 PM		State change completed from Released to Public	
3/20/13 9:39 PM	sjain	State change completed from Public to Uploaded	
4/3/13 9:17 PM	jsanyal	State change proposed from Uploaded to Released	
4/3/13 9:17 PM		Signoff started	
4/3/13 9:28 PM	sjain	Review started	
4/3/13 9:43 PM	sjain	Approved	sj uploaded files with Jay.
4/3/13 9:43 PM		Signoff completed	
4/3/13 9:43 PM		State change completed from Uploaded to Released	
4/3/13 9:44 PM	sjain	State change proposed from Released to Public	
4/3/13 9:44 PM		Signoff started	
4/3/13 9:45 PM	sjain	Review started	
4/3/13 9:45 PM	sjain	Approved	Reviewed and promoted to public.
4/3/13 9:45 PM		Signoff completed	

TC Template Folder Properties:

ANSYS Release:

Completion Status: 1) Finalized

Computational Effort: XL (more than 2 weeks)

IPR Status: 3) Restricted

Included in AFD

Validation Manual:

Included in Fluids QA Verification Services:

Included in Regression 1) None

Testina:

Industry Type: Automotive. Generic for all Industries

Investment in Man

Keywords: Turbulence_LES, Turbulence_RANS, Turbulence_SAS, Turbulence_SST, Turbulence_aerodynamics

Technology Type: ANSYS CFX. ANSYS Fluent. Turbulence

Aerodynamics of the DrivAer car model. DrivAer car model has been created by TU Munich, Germany Testcase Details:

in collaboration with BMW and Audi as a blend of BMW 3 and Audi A4 car geometries. The simplified

estate and two different fastback car models have been investigated.

Type of Testcase: 2 Validation

EKM Object Properties:

Checked Out

By:

Checkin Checkin Disabled Policy:

Created By: tfrank

Date

Created:

12/19/12 10:30 AM

Date

4/10/13 8:20 AM Modified:

Aerodynamics of the DrivAer car model. DrivAer car model has been created by TU Munich, Germany in

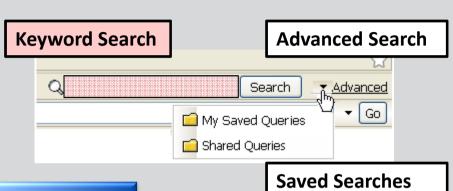
Description: collaboration with BMW and Audi as a blend of BMW 3 and Audi A4 car geometries. The simplified estate and

two different fastback car models have been investigated.

Expiration Date:

1/4/13 10:17 AM

Image:


Lifecycle Stage:

ANSYS Usage Scenarios – Accessing Information (II)

EKM Plain Search:

Metadata can be used for plain search for database content

Search in Contents

1	S		١	
1	_	-	L	
	=		L	
	-		1	

18

CFX Definition Properties:

Combustion Model: None

Turbulence Model: K Epsilon

TC Template Folder Properties:

Heat Transfer Model: Thermal Energy

13.0

Housing, Pipes

Air Ideal Gas. Steel

14.5

1) Finalized

1) Unrestricted

XL (more than 2 weeks)

Process Technology

Multiphase models 2_Validation

ANSYS Fluent, Eulerian Multiphase

EulerianMPF_kinetic theory, EulerianMPF_solids pressure

Boundaries:

CEX Version:

Materials:

Radiation Model:

ANSYS Release:

IPR Status:

Services:

Industry Type:

Keywords:

Technology Type:

Testcase Details:

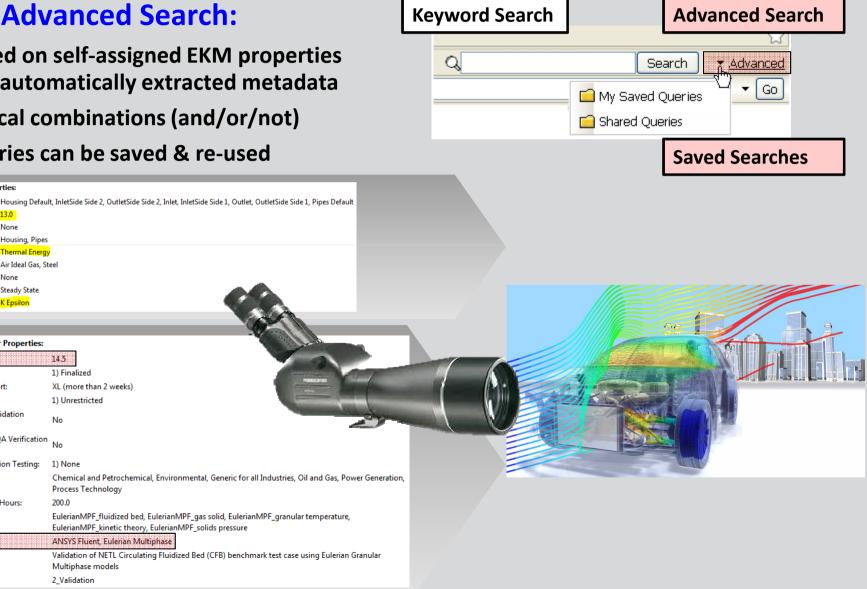
Type of Testcase:

Completion Status:

Computational Effort:

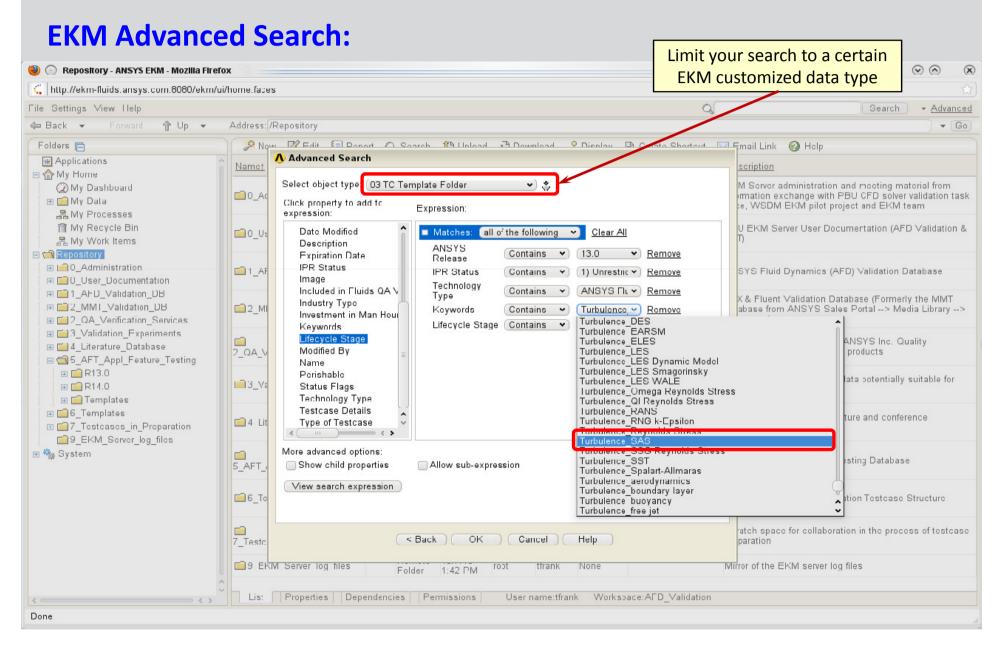
Included in AFD Validation

Included in Fluids OA Verification


Included in Regression Testing:

Investment in Man Hours:

ANSYS Usage Scenarios – Accessing Information (III)

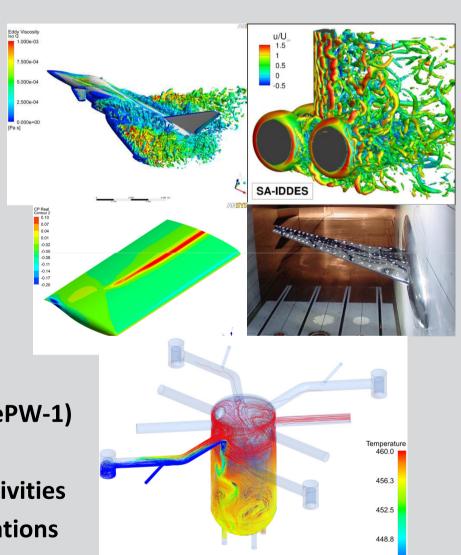

EKM Advanced Search:

- Based on self-assigned EKM properties and automatically extracted metadata
- Logical combinations (and/or/not)
- Queries can be saved & re-used

ANSYS Usage Scenarios – Accessing Information (IV)

ANSYS CFD Solver V&V Database Status (May 2013)

• Approx. 220 test cases in 14 technology areas (~2.0 Tb):


Technology area	Subareas	Test cases	
01 – General Numerics	-	10	
02 – Material Properties	-	3	
03 – Turbulence Acoustics	10	93	
04 – Eulerian Multiphase Flows	10	46	
05 – Lagrangian Particle Tracking	7	14	
06 – Reactive Flows / Combustion	9	17 (+ 1× ICE)	
07 - Radiation & Heat Transfer / CHT	-	8	
08 – HPC / Parallel Computing	-	-	
09 – FSI & System Coupling	-	9	
10 - Turbomachinery	2	10	
11 – Internal Combustion Engine (ICE)	-	3	
12 – EMHD	-	-	
13 – Special Physics	-	-	
14 – Solver Meshing	-	2	

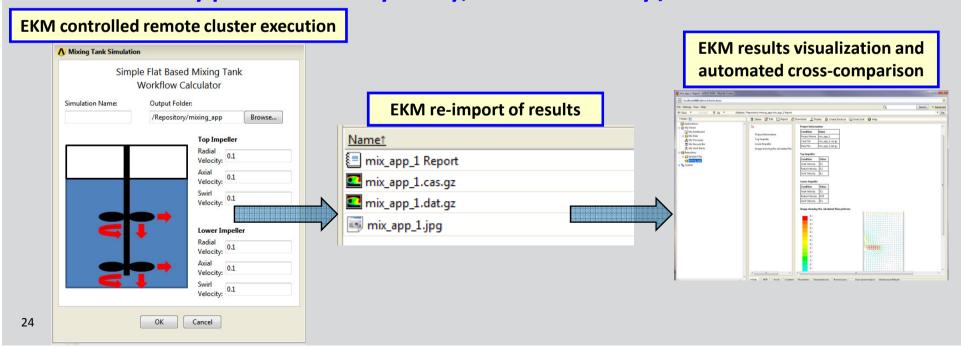
ANSYS CFD Solver V&V Database – The Content

Sources of validation test cases:

- ANSYS CFD solver development V&V
- **ANSYS** internship students program
- Customer driven benchmarks
- **ANSYS** participation in R&D projects funded by EU & national organizations
- **ANSYS** participation in international CFD benchmark activities
 - AIAA 1st 4th Drag Pred. WS
 - AIAA 1st & 2nd HiLift Pred. WS
 - AIAA 1st Aeroelasticity workshop (AePW-1)
 - OECD/NEA → see next slide
 - ERCOFTAC & ECCOMAS CFD V&V activities
- **ANSYS** conference & workshop publications based on CFD studies

445.0

ANSYS OECD/NEA CFD V&V Benchmarks


Year	Title	Geometry	ANSYS Partici- pation
2004- 2009	OECD/NRC Benchmark based on NUPEC BWR Fullsize Bundle Test Sixth Workshop – BFBT		Fluent/ indirect
2009- 2011	OECD/NEA & NUPEC PWR Sub-channel Bundle Tests Benchmark - PSBT	T. (1) 4,500-40 4,500-40 4,500-40 4,500-40 4,500-40	yes
2009- 2011	OECD/NEA-Vattenfall T-Junction Benchmark on Turbulent Thermal Mixing and Thermal Fatigue Phenomenon		no/ indirect / post- test
2011- 2013	OECD/NEA-KAERI MATiS-H Benchmark on Turbulent Flow Through 5x5 Rod Bundle with Spacers (Split and Swirl Type)		yes
2013- 2014	Proposal: OECD/NEA – PSI CFD Benchmark on Erosion of a Stratified Layer by a Buoyant Jet in a Large-Scale Containment Facility	Temp. Distr., t=500s, MPII-1-3 50 40 10 15 20 5 10 15	yes

NNSYS V&V Database – Future Outlook

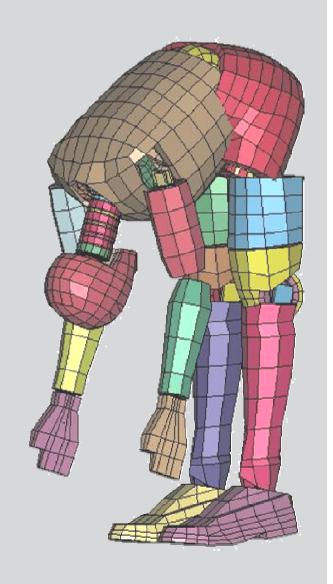
Future development of the CFD Solver V&V database on EKM:

- Filling the gaps in our validation matrix for the ANSYS CFD solvers
- EKM R&D for automated & regular execution of V&V test cases
- Automated cross-comparison for V&V tests using different solver versions
- Linux cluster uplink for the EKM server and remote execution
- Automated postprocessing, acceptance criterion evaluation
 - ⇒ Partially possible already today; more a usability / ease-of-use issue

ANSYS Summary & Outlook

 With ANSYS EKM as the technical platform ANSYS is getting close to reach the set goal of:

```
Collect and store all available ANSYS CFD solver V&V test case material
     \Rightarrow in a single place
           \Rightarrow in a unified format
               \Rightarrow with a well-defined V&V process for the case studies
                    \Rightarrow and with QA by an established test case reviewing process
     ⇒ Enable ANSYS world-wide access, knowledge sharing & team collaboration
     ⇒ Provide ANSYS customers with high quality CFD solver validation
```


- ANSYS EKM has proven as a mature and flexible SDPM solution used today by ~1300 users in all world-wide ANSYS offices
- ANSYS is continuously investing in high verification and validation standards for the developed ANSYS software

August 9, 2013

Thank you!

