

LES Simulation of Turbulent Flow and Heat Transfer in Cavities of a Heat Sink

Structures

Electronics

Systems

Ch. Kasprzyk, TU Dresden Th. Frank, F. Menter, ANSYS Germany B. Vogt, Th. Scherer, VOITH Hydro

Presentation ACUM 2014, Nürnberg, 03.06.2014

ANSYS Generator in Hydro Power Plant

- High electric current
- Ohmic resistance

2

- \rightarrow Heat generation in pole windings
- → Pole windings on rotor are cooled with air to guarantee thermal stability of the material

http://www.voith.com/de/s2_vh_peixe_large_hydro.png

- "RIM-ventilation" is the preferred ventilation method for large salient poles hydro generators
- Rotor hub acts like a centrifugal pump transporting air radially outwards
- \rightarrow Air is channeled along the pole windings, which are thereby cooled via convection
- \rightarrow Compliance of the temperature limit (insulation material)

3

- Test case description
- II Objectives
- III Precursor investigations
- IV Modeling
- V Results
- **VI** Conclusion

ANSYS Test Case Description

5

- Numerical investigation of the air flow around pole windings
 - $\rightarrow\,$ Use of simplified, scaled and generic geometry
- Hot air flows around a cuboid and is then cooled via convection in six cavities
- Experimental data from wind tunnel measurements are basis for investigation and comparison with CFD simulation results

Test case description

II Objectives

- III Precursor investigations
- IV Modeling
- V Results
- **VI** Conclusion

- Numerical prediction of the cooling process: aerodynamic + thermodynamic / heat transfer in cavities
 - \rightarrow Gain deeper understanding of pole winding cooling process (e.g. influence of turbulence and its modeling)
 - \rightarrow Optimisation of convective cooling process
 - \rightarrow Reduce risk of cooling issues
 - → Higher utilization factor in the generator with positive impact on overall plant construction costs

• Validation / applicability study of scale-resolving turbulence models

http://www.voith.com/de/s1_vh_motor_generator.png C. Kasprzyk

Test case description

II Objective

III Precursor investigations

- IV Modeling
- V Results
- **VI** Conclusion

ANSYS Precursor Investigations

- Suitable turbulence model?
- RANS → Differences in velocity magnitude and turb. kinetic energy in comparison to the experimental data
- SAS → Fallback in stationary solution
- Hybrid formulation DES/DDES

 → Missing clear spatial seperation of RANS/LES zone causes unphysical flow around cuboid
- \rightarrow Turbulence modeling with LES

Monitors of instantaneous SAS velocity values

ANSYS Precursor Investigations

Comparison of velocity fluctuations in 6th cavity generated by different combinations of lateral domain size and lateral grid resolution

ANSYS Precursor Investigations

- Influence of the paint layer on the heat sink surface? (infrared measurements)
 - → Consideration

- Initial temperature in the heat sink?

 →I. Splited LES (only aerodynamic) and RANS (aero- and thermodynamics) to generate initial
 - conditions →II. Final LES

(aero- und thermodynamics)

Test case description

- II Objective
- III Precursor investigations
- IV Modeling
- V Results
- VI Conclusion

Modeling

- Subgrid model: WALE
- Number of cells: 85 Mill.
- Time step: Δt = 2·10⁻⁵ s
 → CFL ≈ 2
- Convergence criteria (RMS residuals): < 6.10⁻⁵

- Calculation time: 0,54 s
- Averaging time: 0,16 s

- Test case description
- II Objective
- III Precursor investigations
- IV Modeling
- V Results
- VI Conclusion

• The global flow pattern

Comparison of the mean velocity profiles $u(y)/u_b$ of :

- \diamond the experiment
- - the LES result

ANSYS Results

• Mid plane

Comparison of the normalized mean velocity magnitude $|\vec{u}|/u_b$ (left) and the normalized turbulence kinetic energy k/u_b^2 (right)

• Surface of the heat sink cavities

Comparison of the normalized mean temperature T/T_b

(LES temperatures not yet in 100% thermal equilibrium due to very different LES & CHT time scales)

• Surface of the heat sink cavities

Comparison of the mean heat transfer coefficient α

18 © 2014 ANSYS, Inc.

- Test case description
- II Objective
- III Precursor investigation
- IV Modeling
- V Results

VI Conclusion

- Qualitatively good agreement of the velocity profiles, quantitatively especially in the surrounding of the cuboid
- Agreement of stationary surface temperature
- Differences in boundary layer curve in front of the cuboid
- Systematic deviation of the velocity and turbulent kinetic energy in the free shear layer / mixing layer
- Not yet stationary heat flux in LES computation
- No fully statistically reliable mean values and fluctuations due to very different time scales of LES and CHT
- Evaluation is difficult due to the underlying experimental uncertainties
- → LES modeling extremely expensive and has led so far to only moderate improvement in results accuracy in comparison to RANS modeling

ANSYS Outlook

- Extensive monitoring of LES/CHT required
- Two-point correlations → Lateral domain extension sufficiently large ?
- Time step reduction
 → CFL ≤ 1
- Larger averaging period and total CFD simulation time
 - \rightarrow More reliable statistical flow averaging
 - → Consideration of low frequency turbulence events
 - → Stationary mean heat flux possible?
 - \rightarrow Influence of 3d secondary flows in wind tunnel?
 - → Influence of neglected free-stream turbulence at inlet boundary condition of ELES domain (free-stream turb. kin. energy k/u_b²<0.001)?</p>
- Decoupling of flow and heat transfer calculation by an external manual iteration loop between LES and CHT

 \rightarrow Acceleration in reaching a thermal steady state?

• Reliable experimental data are essential

The investigation was supervised and supported by:

Thomas Frank Florian Menter Bastian Vogt Thomas Scherer

(ANSYS Germany GmbH, Otterfing)(ANSYS Germany GmbH, Otterfing)(Voith Hydro Holding GmbH & Co. KG, Heidenheim)

(Voith Hydro Holding GmbH & Co. KG, Heidenheim)