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• The NUBEKS R&D consortium (2014-2018)

• What is Critical Heat Flux (CHF)?

• Model formulation for CFD simulation of CHF

– Extended RPI model ⇔ Inhomogeneous MUSIG ⇔ CHT

• The TU Munich test facility (Copper heater, NOVEC-649)

Outline
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• The TU Munich test facility (Copper heater, NOVEC-649)

– CHF simulation and model validation

• The KIT COSMOS-L test facility (ZircAlloy, Water)

– The test matrix

– CHF simulations and results discussion

• Concluding remarks and outlook



• R&D Consortium (July 2014 – June 2018):
„CFD Methods for the Prediction of Critical Heat Flux“ 
NUBEKS – Numerische Beschreibung Kritischer Siedevorgänge
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• Critical Heat Flux (CHF):
– Sometimes referred to as the boiling crisis or departure 

from nucleate boiling (DNB)

– With increased wall heat flux, suddenly the heat 
transfer at a heater surface becomes inefficient.
� Applied heat can no longer be removed from 

the heater surface by so far acting heat transfer 
mechanisms, i.e. mainly by evaporation/boiling

� Sudden excursion of wall temperature
� Can lead up to destruction of the heater material

(melting)

What is Critical Heat Flux (CHF)?
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(melting)

• CHF mechanisms / explanations:
– Near wall vapor bubble crowding

– Vapor film @ wall is shielding the heater wall from 
subcooled liquid

– Sublayer dryout, i.e. liquid film underneath vapor layers 
close to heater wall are drying out ⇒ dry patch 
formation

– …

CHF at upper end of heater rod in COSMOS-L,

Image by courtesy of Florian Kaiser, KIT / IKET



•

Model Formulation for CFD Simulation of CHF
- Extended RPI Wall Boiling Model -

Qe

Qg

Qq
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• Area fraction influenced by 
bubbles

• Area fraction influenced by single 
phase convection

Model formulation for CFD simulation of CHF 
Extended RPI Wall Boiling Model: Partitioning
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• Convection to liquid

• Quenching

• Evaporation

• Convection to gas



• MUSIG = Multiple Size Group Model
– Discrete Population Balance Model for poly-dispersed flows

– Particle size distribution is discretized by assigning bubbles to different 
‘size groups’

• Homogeneous MUSIG
– Assumes single velocity field for all bubble classes (one dispersed 

phase)

Model Formulation for CFD Simulation of CHF 
The MUSIG Model
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phase)

– Valid for bubbly flows in spherical / elliptic regime and when lift force 
can be neglected

• Inhomogeneous MUSIG
– Allows multiple velocity fields for groups of bubble classes

(more than one dispersed phase, i.e. more than 1 set of N.-S. eq.’s)

– Several bubble size classes can belong to the same ‘velocity group’

– Useful when different bubble size classes have very different velocity 
fields, e.g. due to change of sign of the lift force.

• Allows for separation of bubbles of different diameter based on
acting forces and governing physics



Model Formulation for CFD Simulation of CHF 
MUSIG + Interphase Mass Transfer 

d1 d3 d4 d5 d6 d7 d8d2

Bubble Break-upBubble Coalescence
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EvaporationCondensation



Model Formulation for CFD Simulation of CHF 
MUSIG + Wall Boiling
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Model Formulation for CFD Simulation of CHF

Analysis Type Steady State with pseudo-time scale ∆∆∆∆t= 0.001 [s] (TUM) / 0.005 [s] (KIT)

Interfacial forces Lift Tomiyama

Drag Grace

Turbulent Dispersion FAD model

Boiling Model

Non-equilibrium RPI model
Gas crit vf = 0.8 (TUM) / 0.6 (KIT)

Maximum Area Fraction of Bubble Influence = 10

Extended RPI wall boiling model ⇔ Inhomogeneous MUSIG ⇔ CHT
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Non-equilibrium RPI model
Maximum Area Fraction of Bubble Influence = 10

Bubble Departure Diameter Tolubinski et al. (default)

Nucleation Site Density Lemmert et al. (default)

Vapor heat 

transfer
Thermal Energy

Turbulence model SST Homogeneous SST Turbulence Model

Interphase Heat 

Transfer

MUSIG Two-Resistance Model

Liquid Phase: Tomiyama / Gas Phase(s): Nu = 6



The Planar Copper Heater – NOVEC-649  
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The Planar Copper Heater – NOVEC-649  
Test Facility (TUM/TD)



The TU Munich Test Facility
- Planar Copper Heater in Vertical Channel -

Experiments at TU Munich, 

Dept. Techn. Thermodyna-

mics by:

• Prof. Thomas Sattelmayer

• Dr. Christoph Hirsch

• Moritz Bruder

• Paul Riffat
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Image by courtesy of G. Bloch, T. Sattelmayer (TUM/TD)

• Paul Riffat

Reference:



• The TUM/TD wall boiling test facility & boiling experiments

• Subcooled liquid : Novec-659 Refrigerant

The TU Munich Test Facility
- Planar Copper Heater in Vertical Channel -
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Images by courtesy of G. Bloch, T. Sattelmayer (TUM/TD)



• Reference case operating conditions:

– Pressure = 1 bar

– Coolant Mass Flux = 1000 [kg/m²s]

– Liquid SubCooling = 9 [K]         → TL, Inlet = Tsat – 9 [K]

– Wall heat flux : varying from zero to onset of CHF

The TU Munich Test Facility - Reference Case
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• Comparison to data:

– Boiling curve : Wall Heat Flux over Wall Superheat (TWall – TSat)

– Wall heat flux at onset of CHF

– Radial volume fraction profiles (optical fiber measurements)



• Simplification to 2D computational domain

• Copper heater taken into account as 2d CHT domain

– Application of the wall heat flux to outer wall of the copper domain 
with insulated interfaces to the stainless steel parts

• NOVEC-649: Pref = 1 bar  ;  Tsat = 322.15 [K]

The TU Munich Test Facility - Computational Domain
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• NOVEC-649: Pref = 1 bar  ;  Tsat = 322.15 [K]

Inlet Outlet

Steel SteelCopper

2D Case

2D CHT Case

Isolation-PDMS



The TU Munich Test Facility 
- MUSIG Model Setup

• Inhomogenoues MUSIG with two velocity groups

– 10 Size Groups for the first velocity group (VapourSmall Phase)

– 5 Size Groups for the second velocity group (VapourBig Phase)

• Transition diameter is set to the critical diameter where the lift coefficient 
changes sign

– At constant NOVEC-649 properties @ the reference pressure and 
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– At constant NOVEC-649 properties @ the reference pressure and 
temperature this diameter is almost equal to 1.7 mm

• Diameter of the Size Groups are equidistantly distributed within each 
of the two velocity groups

– Minimum diameter: 0.2 mm

– Maximum diameter: 10 mm

• Turb. Coalescence Coefficient (Prince and Blanch Model) =  2.5,…,10

– established by parameter variation



The TU Munich Test Facility - Boiling Curve
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•

The TU Munich Test Facility 
- Nucleation Site Density Variation
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275[kW/m²] 300[kW/m²]

58.06 75.29

100.56 104.95



The TU Munich Test Facility - Nucleation Site 
Density Variation
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• The way like conditions for Fully Developed Boiling (FDB) flow 
regime had been defined by experimentalists (TUM):

The TU Munich Test Facility – Validation
Defining Fully Developed Boiling (FDB) Regime
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Novec-659 Steam Volume Fraction Profiles
@ 75% of CHF - Lowest Position : x=34mm
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Novec-659 Steam Volume Fraction Profiles
@ 75% of CHF - Middle Position : x=84mm
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Novec-659 Steam Volume Fraction Profiles
@ 75% of CHF - Highest Position : x=154mm
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Smaller void fraction 

production in experiment 

at the end of the test 

section probably due to 

other heat losses and 

earlier re-condensation.



The COSMOS-L Test Facility (KIT/IKET)
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The COSMOS-L Test Facility (KIT/IKET)



The COSMOS-L Test Facility (KIT)

Experiments by KIT / TVT 

and KIT / IKET :

• Prof. Dr. Thomas Wetzel

• Dr. Stephan Gabriel

• Florian Kaiser

• Wilson Heiler
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Images by courtesy of St. Gabriel & F. Kaiser (KIT)

Reference:
Christoph Haas: 

“Critical Heat Flux for Flow 

Boiling of Water at Low 

Pressure on Smooth and 

Micro-Structured Zircaloy 

Tube Surfaces”, 

KIT Scientific Publishing, 

Karlsruhe, 2012 .



• Axially symmetric

– Heat Flux prescribed on the inner ZircAlloy
heater rod surface

• Radial dimensions

– Inner radius of Zircaloy-Tube: Ric = 4.18 mm

– Outer radius of Zircaloy-Tube : Rac =4.75 mm

The COSMOS-L Test Facility (KIT)

Outlet
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– Outer radius of Zircaloy-Tube : Rac =4.75 mm

– Inner radius of Duran-Domain: Rid = 9 mm

– Outer radius of Duran-Domain : Rad = 10.9 mm

– Annulus (Water-Domain) width : 4.25 mm

• Axial dimensions

– Total heating section height: LHeated = 326 mm

Inlet



CFD Setup Characteristics – iMUSIG

Version 18.1 + Customized Solver

Analysis Type Steady runs with fluid time scale ∆∆∆∆t= 0.005 [s]

Material Properties IAPWS IF-97 Library

Interfacial forces Lift Tomiyama

Drag Grace

Turbulent Dispersion FAD model

Boiling Model Equilibrium RPI model Maximum Area Fraction 

Extended RPI wall boiling model ⇔ Inhomogeneous MUSIG ⇔ CHT
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Boiling Model Equilibrium RPI model Maximum Area Fraction 

of Bubble Influence = 10 

Bubble Departure 

Diameter
Tolubinski et al. (default)

Nucleation Site Density
Lemmert et al.(default) / 

Modified Reference Site Density

Vapor heat transfer Thermal Energy

Turbulence model SST Homogeneous Turbulence

IMUSIG

Breakup Coeff. = 1.0 ; Turb. Coalescence Coefficient = 10.0

Boundary Conditions: Size Fraction of the smallest group = 1 @ Domain 

Openings and Domain Initialization



COSMOS-L: Polydispersed Fluid Resolution

• Two velocity groups with 23 size classes equidistantly 
distributed within the velocity groups

– 20 size groups for the first velocity group

• Minimum diameter: 0.02 [mm]

• The smallest bubble diameter been estimated by means of the 
provided HD videos to be around 0,1-0,2 [mm]
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provided HD videos to be around 0,1-0,2 [mm]

• Bubble Detachment Diameter (Lift-Off) according to Tolubinski et 
al. is round about 0.4 mm

– 3 size groups for the second velocity group

• Maximum diameter: 7 mm

– Minimum Volume Fraction = 1E-9

• Transition diameter is the diameter where the Tomiyama Lift 
coefficient changes sign: 5.33339 [mm] @ 1.2 [bar] & 377.93 [K]



• T80P1200M400
Operating Conditions

– Liquid SubCooling: 20 [K]

i.e. Water Inlet Temperature: 80°C

– Reference Pressure: 1.2 [bar]

– Mass Flux : 400 [kg/m²s]

The COSMOS-L Test Facility (KIT) 
The Test Matrix
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– Mass Flux : 400 [kg/m²s]

• Calculating boiling curves starting from 400 [kW/m²] Heat Flux

• Further investigated operating conditions:

– T80P2000M400 – pressure variation

– T80P2000M600 – add. mass flux variation

– T65P1200M400 – liquid subcooling variation



• Water / Water Vapor : from IAPWS material library

COSMOS-L: Material Parameters

Material IAPWS IF97

Minimum Temperature 50 [C]

Maximum Temperature 400 [C]

Minimum Absolute Pressure 0.8 [bar]
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• ZircAlloy-4 : CES Edupack 2010 material data sheet

• Duran glass outer walls : manufacturer material data sheet
http://www.duran-group.com/de/ueber-duran/duran-eigenschaften.html) 

Minimum Absolute Pressure 0.8 [bar]

Maximum Absolute Pressure 2 [bar]

Number of Points 600



T80P1200M400

(Reference Case)
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(Reference Case)



• Cladding temperature excursion 
(mean domain temperatures are 
monitored)

• Previous simulation runs show 
restarts from:
Qwall = 400 [kW/m²]
� Qwall = 550 [kW/m²]

The COSMOS-L Test Facility (KIT) 
T80P1200M400: CHF at Qwall = 850 [kW/m²]

Sudden cladding temperature 

increase, if Qwall is increased 

from 700 to 850 [kW/m²]
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� Qwall = 550 [kW/m²]
� Qwall = 700 [kW/m²]
� Qwall = 850 [kW/m²]

• Qwall = 800 [kW/m²] does not 
yet show this strong cladding 
temperature increase but 
behaves like the 700-er case 
with Twall~408.2 [K]
� mean Twall increase by ~50 [K]



The COSMOS-L Test Facility (KIT) 
T80P1200M400: The Boiling Curve
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The COSMOS-L Test Facility (KIT) 
Reference Case T80P1200M400

• The experimentally 
measured heat flux at 
which CHF occurs is about 
867 [kW/m²] with a 
standard deviation equal to 
16 [kW/m²]
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• This is in good agreement 
with the ANSYS CFX results

– Temperature excursion in the 
ZircAlloy heater rod obtained 
@ 850 [kW/m²] in the 
simulations

– Liquid cooling of ZircAlloy
cladding breaks down at the 
very end of the heater rod

T80P1200M400 

@ 850 [kW/m2]



• Liquid cooling of ZircAlloy cladding breaks down at the very end of the 
heater rod

CHF at Qwall = 850 [kW/m²]
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• CHF in the ZircAlloy cladding and highly superheated steam 
in both MUSIG velocity groups showing almost the same temperature

CHF at Qwall = 850 [kW/m²]

Location of occurrence of CHF 

at the end of heater rod
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Total Vapour VF Distribution with Increased 
Wall Heat Flux : 400 [kW/m²] � 700 [kW/m²]

Qwall = 400 [kW/m²] Qwall = 500 [kW/m²] Qwall = 600 [kW/m²] Qwall = 700 [kW/m²]
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Temperature Distribution with Increased 
Wall Heat Flux : 600 [kW/m²] � 850 [kW/m²]

Qwall = 600 [kW/m²] Qwall = 700 [kW/m²] Qwall = 850 [kW/m²]Qwall = 800 [kW/m²]
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Temperature Distribution with Increased 
Wall Heat Flux : 400 [kW/m²] � 700 [kW/m²]

Qwall = 400 [kW/m²] Qwall = 500 [kW/m²] Qwall = 600 [kW/m²] Qwall = 700 [kW/m²]
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Temperature Distribution with Increased 
Wall Heat Flux : 600 [kW/m²] � 850 [kW/m²]

Qwall = 600 [kW/m²] Qwall = 700 [kW/m²] Qwall = 850 [kW/m²]Qwall = 800 [kW/m²]
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T80P2000M400

(Reference Pressure Variation)
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(Reference Pressure Variation)



The COSMOS-L Test Facility (KIT)
T80P2000M400 Boiling Curve
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The COSMOS-L Test Facility (KIT)
T80P2000M400 - CHF Comparison

• The experimentaly measured 
heat flux at which CHF occurs 
is about 1229 [kW/m²] with a 
standard deviation equal to 
9 [kW/m²]

• This is in good agreement 
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• This is in good agreement 
with the ANSYS CFX results

– Temperature excursion in the 
Zircalloy heater rod obtained @ 
approx. 1300 [kW/m²] in the 
simulations

– Liquid cooling of ZircAlloy
cladding breaks down at the very 
end of the heater rod

T80P2000M400 

@ 1360 [kW/m2]



T80P2000M400: Temperature Distribution

Qwall = 1250 [kW/m²]

Qwall = 1300 [kW/m²]

Qwall = 1360 [kW/m²]
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Experimentally measured 

CHF value:

Qwall = 1229 [kW/m²]



Concluding Remarks and Outlook

• Presented a short overview of the NUBEKS R&D project results obtained by 
ANSYS Germany for CFD modeling and simulation of Critical Heat Flux (CHF)

• Successfully predicted CHF for 3 experiments from TUM and COSMOS-L (KIT) 
test facilities

• Key ingredients:

– ANSYS CFX 18.0 or newer

– CHT for the heater material

45 © 2015 ANSYS, Inc. January 17, 2018

– CHT for the heater material

– Extended RPI wall boiling model 

– Inhomogeneous MUSIG model for the vapor phase IAD

• Some challenges and modeling uncertainties remain:

– Nucleation site density specification

– Break-up and coalescence modeling

– Multiphase flow turbulence modeling for flow regime transition

– Extraordinary thin vapor layers at high liquid subcooling / 
high liquid mass flux
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