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• The NUBEKS R&D consortium (2014-2018)

• What is Critical Heat Flux (CHF)?

• Model formulation for CFD simulation of CHF

– Extended RPI model ⇔ Inhomogeneous MUSIG ⇔ CHT

• The KIT COSMOS-L test facility

Outline
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• The KIT COSMOS-L test facility

– The test matrix

– Wall boiling & CHF simulations

• Concluding remarks and outlook



• R&D Consortium (July 2014 – June 2018):
„CFD Methods for the Prediction of Critical Heat Flux“ 
NUBEKS – Numerische Beschreibung Kritischer Siedevorgänge
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• Critical Heat Flux (CHF):
– Sometimes referred to as the boiling crisis or departure 

from nucleate boiling (DNB)

– With increased wall heat flux, suddenly the heat 
transfer at a heater surface becomes inefficient.
� Applied heat can no longer be removed from 

the heater surface by so far acting heat transfer 
mechanisms, i.e. mainly by evaporation/boiling

� Sudden excursion of wall temperature
� Can lead up to destruction of the heater material

(melting)

What is Critical Heat Flux (CHF)?
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(melting)

• CHF mechanisms / explanations:
– Near wall vapor bubble crowding

– Vapor film @ wall is shielding the heater wall from 
subcooled liquid

– Sublayer dryout, i.e. liquid film underneath vapor layers 
close to heater wall are drying out ⇒ dry patch 
formation

– …

CHF at upper end of heater rod in COSMOS-L,

Image by courtesy of Florian Kaiser, KIT / IKET



•

Model Formulation for CFD Simulation of CHF
- Extended RPI Wall Boiling Model -
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• MUSIG = Multiple Size Group Model
– Discrete Population Balance Model for poly-dispersed flows

– Particle size distribution is discretized by assigning bubbles to different 
‘size groups’

• Homogeneous MUSIG
– Assumes single velocity field for all bubble classes (one dispersed 

phase)

Model Formulation for CFD Simulation of CHF 
The MUSIG Model
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phase)

– Valid for bubbly flows in spherical / elliptic regime and when lift force 
can be neglected

• Inhomogeneous MUSIG
– Allows multiple velocity fields for groups of bubble classes

(more than one dispersed phase, i.e. more than 1 set of N.-S. eq.’s)

– Several bubble size classes can belong to the same ‘velocity group’

– Useful when different bubble size classes have very different velocity 
fields, e.g. due to change of sign of the lift force.

• Allows for separation of bubbles of different diameter based on
acting forces and governing physics



Model Formulation for CFD Simulation of CHF 
MUSIG + Interphase Mass Transfer 

d1 d3 d4 d5 d6 d7 d8d2

Bubble Break-upBubble Coalescence
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Model Formulation for CFD Simulation of CHF 
MUSIG + Wall Boiling
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CFD Setup Characteristics – iMUSIG

Version 18.1 + Customized Solver

Analysis Type Steady runs with fluid time scale ∆∆∆∆t= 0.005 [s]

Material Properties IAPWS IF-97 Library

Interfacial forces Lift Tomiyama

Drag Grace

Turbulent Dispersion FAD turbulent dispersion model

Boiling Model Equilibrium RPI model Maximum Area Fraction 

Extended RPI wall boiling model ⇔ Inhomogeneous MUSIG ⇔ CHT
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Boiling Model Equilibrium RPI model Maximum Area Fraction 

of Bubble Influence = 10 

Bubble Departure 

Diameter
Tolubinski et al. (default)

Nucleation Site Density
Lemmert et al.(default) / 

Modified Reference Site Density

Vapor heat transfer Thermal Energy

Turbulence model SST Homogeneous Turbulence

IMUSIG

Breakup Coeff. = 1.0 ; Turb. Coalescence Coefficient = 10.0

Boundary Conditions: Size Fraction of the smallest group = 1 @ Domain 

Openings and Domain Initialization



The COSMOS-L Test Facility (KIT/IKET)
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The COSMOS-L Test Facility (KIT/IKET)



The COSMOS-L Test Facility (KIT)

Experiments by KIT / TVT 

and KIT / IKET :

• Prof. Dr. Thomas Wetzel

• Dr. Stephan Gabriel

• Florian Kaiser

• Wilson Heiler
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Images by courtesy of St. Gabriel & F. Kaiser (KIT)

Reference:
Christoph Haas: 

“Critical Heat Flux for Flow 

Boiling of Water at Low 

Pressure on Smooth and 

Micro-Structured Zircaloy 

Tube Surfaces”, 

KIT Scientific Publishing, 

Karlsruhe, 2012 .



• Axially symmetric

– Heat Flux prescribed on the inner ZircAlloy
heater rod surface

• Radial dimensions

– Inner radius of Zircaloy-Tube: Ric = 4.18 mm

– Outer radius of Zircaloy-Tube : Rac =4.75 mm

The COSMOS-L Test Facility (KIT)

Outlet
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– Outer radius of Zircaloy-Tube : Rac =4.75 mm

– Inner radius of Duran-Domain: Rid = 9 mm

– Outer radius of Duran-Domain : Rad = 10.9 mm

– Annulus (Water-Domain) width : 4.25 mm

• Axial dimensions

– Total heating section height: LHeated = 326 mm

Inlet



• T80P1200M400
Operating Conditions

– Liquid SubCooling: 20 [K]

i.e. Water Inlet Temperature: 80°C

– Reference Pressure: 1.2 [bar]

– Mass Flux : 400 [kg/m²s]

The COSMOS-L Test Facility (KIT) 
The Test Matrix
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– Mass Flux : 400 [kg/m²s]

• Calculating boiling curves starting from 400 [kW/m²] Heat Flux

• Further investigated operating conditions:

– T80P2000M400 – pressure variation

– T80P2000M600 – add. mass flux variation

– T65P1200M400 – liquid subcooling variation



• Water / Water Vapor : from IAPWS material library

COSMOS-L: Material Parameters

Material IAPWS IF97

Minimum Temperature 50 [C]

Maximum Temperature 400 [C]

Minimum Absolute Pressure 0.8 [bar]
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• ZircAlloy-4 : CES Edupack 2010 material data sheet

• Duran glass outer walls : manufacturer material data sheet
http://www.duran-group.com/de/ueber-duran/duran-eigenschaften.html) 

Minimum Absolute Pressure 0.8 [bar]

Maximum Absolute Pressure 2 [bar]

Number of Points 600



COSMOS-L: Polydispersed Fluid Resolution

• Two velocity groups with 26 size classes equidistantly 
distributed within each velocity groups

– 20 size groups for the first velocity group

• Minimum diameter: 0.02 [mm]

• The smallest observable bubble diameter been estimated by 
means of the provided HD videos to be around 0.1-0.2 [mm]
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means of the provided HD videos to be around 0.1-0.2 [mm]

• Bubble Departure Diameter (Lift-Off) according to Tolubinski et 
al. is approx. 0.4 mm

– 6 size groups for the second velocity group

• Maximum diameter: 7 mm

– Minimum Volume Fraction = 1E-9

• Transition diameter is the diameter where the Tomiyama Lift 
coefficient changes sign: 5.33339 [mm] @ 1.2 [bar] & 377.93 [K]



T80P1200M400

(Reference Case)
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(Reference Case)



• Cladding temperature excursion 
(mean domain temperatures are 
monitored)

• Previous simulation runs show 
restarts from:
Qwall = 400 [kW/m²]
� Qwall = 550 [kW/m²]

The COSMOS-L Test Facility (KIT) 
T80P1200M400: CHF at Qwall = 850 [kW/m²]

Sudden cladding temperature 

increase, if Qwall is increased 

from 700 to 850 [kW/m²]

17 © 2015 ANSYS, Inc. January 17, 2018

� Qwall = 550 [kW/m²]
� Qwall = 700 [kW/m²]
� Qwall = 850 [kW/m²]

• Qwall = 800 [kW/m²] does not 
yet show this strong cladding 
temperature increase but 
behaves like the 700-er case 
with Twall~408.2 [K]
� mean Twall increase by ~50 [K]



The COSMOS-L Test Facility (KIT) 
T80P1200M400: The Boiling Curve
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Numerical results vs. Experimental data 

at T80P1200M400

Experiment: CHF @ 867 kW/m2
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The COSMOS-L Test Facility (KIT) 
Reference Case T80P1200M400

• The experimentally 
measured heat flux at 
which CHF occurs is about 
867 [kW/m²] with a 
standard deviation equal to 
16 [kW/m²]
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• This is in good agreement 
with the ANSYS CFX results

– Temperature excursion in the 
ZircAlloy heater rod obtained 
@ 850 [kW/m²] in the 
simulations

– Liquid cooling of ZircAlloy
cladding breaks down at the 
very end of the heater rod

T80P1200M400 

@ 850 [kW/m2]



• CHF in the ZircAlloy cladding and highly superheated steam 
in both MUSIG velocity groups showing almost the same temperature

CHF at Qwall = 850 [kW/m²]

Location of occurrence of CHF 

at the end of heater rod
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Temperature Distribution with Increased 
Wall Heat Flux : 600 [kW/m²] � 850 [kW/m²]

Qwall = 600 [kW/m²] Qwall = 700 [kW/m²] Qwall = 850 [kW/m²]Qwall = 800 [kW/m²]
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T80P2000M400

(Reference Pressure Variation)
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(Reference Pressure Variation)



The COSMOS-L Test Facility (KIT)
T80P2000M400 Boiling Curve – Size Classes
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@ T80P2000M400

Experiment: CHF @ 1229 kW/m2
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The COSMOS-L Test Facility (KIT)
T80P2000M400 Boiling Curve – Avg./Max. TWall
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Calculated Boiling Curve

@ T80P2000M400

Experiment: CHF @ 1229 kW/m2
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The COSMOS-L Test Facility (KIT)
T80P2000M400 - CHF Comparison

• The experimentaly measured 
heat flux at which CHF occurs 
is about 1229 [kW/m²] with a 
standard deviation equal to 
9 [kW/m²]

• This is in good agreement 
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• This is in good agreement 
with the ANSYS CFX results

– Temperature excursion in the 
Zircalloy heater rod obtained @ 
approx. 1300 [kW/m²] in the 
simulations

– Liquid cooling of ZircAlloy
cladding breaks down at the very 
end of the heater rod

T80P2000M400 

@ 1360 [kW/m2]



T80P2000M400: Temperature Distribution

Qwall = 1250 [kW/m²]

Qwall = 1300 [kW/m²]

Qwall = 1360 [kW/m²]
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Experimentally measured 

CHF value:

Qwall = 1229 [kW/m²]



T80P2000M600

(Reference Pressure and 
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(Reference Pressure and 
Fluid Mass Flow Rate Variation)



The COSMOS-L Test Facility (KIT)
T80P2000M600 Boiling Curve – Avg./Max. TWall
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Experiment: CHF @ 1695 kW/m2
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T80P2000M600: Temperature Distribution

Qwall = 1500 [kW/m²]

Qwall = 1700 [kW/m²]

Qwall = 1900 [kW/m²]
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Experimentally measured 

CHF value:

Qwall = 1695 [kW/m²]



T65P1200M400

(Fluid Subcooling Temperature Variation)
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(Fluid Subcooling Temperature Variation)



The COSMOS-L Test Facility (KIT)
T65P1200M400 Boiling Curve – Avg./Max. TWall
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• Due to the thinned vapor layer at 
the wall this case required the 
increase of the resolution of the 
number of classes for the velocity 
group of large bubbles from 3 to 6

• Maximum wall temperature is 
reached as in all other cases  

T65P1200M400 Temperature Distribution
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reached as in all other cases  
towards the outlet of the annular 
test section of COSMOS-L

• The wall and vapor temperature 
excursion was finally predicted 
for applied wall heat fluxes 
beyond 1255 [kW/m²]

T65P1200M400_H1255
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Concluding Remarks and Outlook

• Presented a short overview of the NUBEKS R&D project results obtained by 
ANSYS Germany for CFD modeling and simulation of Critical Heat Flux (CHF)

• Successfully predicted the boiling curve up to CHF for 4 experimental 
series from COSMOS-L (KIT) test facility

⇒ CHF detection by temperature excursion in the heater CHT domain

• Key ingredients:

– ANSYS CFX 18.0 or newer
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– ANSYS CFX 18.0 or newer

– CHT for the heater material

– Extended RPI wall boiling model 

– Inhomogeneous MUSIG model for the vapor phase IAD

• Some challenges and modeling uncertainties remain:

– Nucleation site density specification

– Break-up and coalescence modeling

– Flow regime transition ⇔ Multiphase flow turbulence modeling

– Extraordinary thin vapor layers at high liquid subcooling / 
high liquid mass flux
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